Math, asked by harsh788892, 1 year ago

pls help me out in this question
I will mark as brainlist
no spam else report

Attachments:

Answers

Answered by guptaramanand68
2
Given that roots of the equation
a {(b - c)}x^{2}  + b(c - a)x + c(a - b) = 0
are equal.


For a quadratic equation with equal roots the Discriminant equals 0.


Therefore,

 {(b(c - a))}^{2}  - 4(a(b - c))(c(a - b)) = 0  \\  {b}^{2} ( {c}^{2}  - 2ac +  {a ^{2} ) }  - 4(ab - ac)(ac - bc) = 0 \\  {b}^{2}  {c}^{2}  - 2a {b}^{2} c + a  ^{2} {b}^{2}  - 4( {a}^{2} bc - a {b}^{2} c -  {a}^{2}  {c}^{2}  + ab {c}^{2} ) = 0 \\  {b}^{2}  {c}^{2}  - 2a {b}^{2} c + a ^{2} {b}^{2}  - 4a ^{2}  {b} c + 4a {b}^{2} c + 4 {a}^{2}  {c}^{2}  - 4ab {c}^{2}  = 0 \\   {b}^{2}  {c}^{2}  + 2a {b}^{2} c +  {a}^{2}  {b}^{2}  - 4 {a}^{2} bc + 4 {a}^{2}  {c}^{2}  - 4ab {c}^{2}  = 0 \\ (bc) ^{2}  + 2(ab)(bc)   + (ab)^{2} + 2 ( - 2ac)(ab) + ( - 2ac) ^{2}   + 2( - 2ac)(bc) = 0 \\ (bc + ab - 2ac) ^{2}  = 0  \\ bc + ab - 2ac = 0 \\ bc + ab = 2ac \\  \frac{bc}{abc}  +  \frac{ab}{abc}  =  \frac{2ac}{abc}  \\  \\  \frac{1}{a}  +  \frac{1}{c}  =  \frac{2}{b}



Done. (Sorry for the delay, Latex takes time.)

harsh788892: thanks
harsh788892: vm
Similar questions