Math, asked by llUniqueStarll, 3 months ago

Pls help me out of this question \large\purple{Given} cotA -tanA = 2cot2A then \large\purple{To find} tanA - cotA +2tan2A + 4tan4A + 8cot8A No spamming ​

Answers

Answered by Anonymous
58

A N S W E R :

  • tan A + 2tan2A + 4tan4A + 8cot8A = {\sf{\dfrac{1}{tan A}}}= cotA

\\

Given :

  • cotA -tanA = 2cot2A

\\

To find :

  • tanA - cotA +2tan2A + 4tan4A + {\sf{\dfrac{8}{tan8A}}} ?

\\

Solution :

{\sf{tan\: A\: + \:2tan2A \:+ \:4tan4A \:+ \; \dfrac{8\bigg(1-tan24A\bigg)}{2tan4A}}}

\\

{\sf{tan \:A \:+\: 2tan2A \:+}}\bigg[\bigg\{ {\sf{4tan4A\bigg(tan4A\bigg)}}\bigg\}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{\sf{\dfrac{+\: 4 \; \bigg(1-tan24A\bigg)}{tan4A}}}

\\

{\sf{\dfrac{tan \:A \:+ \:2tan2A\: +\; \bigg[4tan24A \;+ \;4\: -\; tan24A\bigg]}{tan4A}}}

\\

{\sf{\dfrac{tan \:A \:+ \;2tan2A \:+ \;4}{tan4A}}}

\\

Hence,

  • {\bf{\dfrac{tan \:A\: +\: 2tan2A\: + \:4tan4A \:+ \:8cot8A\: =\: 1}{tanA\: = \:cotA}}}

\\

~~~~\qquad\quad\therefore{\underline{\textsf{\textbf{Hence, Proved!}}}}

~~~~~~~~~~~~~~~ ____________________

Similar questions