Physics, asked by rashmika89, 3 months ago

pls help me out with my physics prblms​

Attachments:

Answers

Answered by Anonymous
22

\underline{\underline{\sf \qquad Solution :  \qquad}} \\

\longrightarrow\:\:\sf y = x^{-3} \\  \\

On differentiating both the sides with respect to x, we get :

\longrightarrow\:\:\sf  \dfrac{d}{dx} {x}^{n}  =n {x}^{n - 1}   \\  \\

\longrightarrow\:\:\sf  \dfrac{dy}{dx}  = - 3 {x}^{ - 3 - 1}   \\  \\

\longrightarrow\:\:\sf  \dfrac{dy}{dx}  = - 3 {x}^{ - 4}   \\  \\

\longrightarrow\:  \: \underline{ \boxed{\sf  \dfrac{dy}{dx}  = \dfrac{ - 3}{ {x}^{4} } }}   \\  \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━

\longrightarrow\:\:\sf  6x^{5} + 4x^{3} - 3x^{2} + 2x - 7   \\  \\

  • Let y = 6x⁵ + 4x³- 3x² + 2x - 7

\longrightarrow\:\:\sf  \dfrac{d}{dx} {x}^{n}  =n {x}^{n - 1}  \: and \:   \dfrac{d}{dx} c=0 \\  \\

On differentiating both the sides with respect to x, we get :

\longrightarrow\:\:\sf  \dfrac{dy}{dx}  = 6.5x^{5 - 1} + 4.3x^{3 - 1} - 3.2x^{2-1} + 2.x^{1 - 1} - 0  \\  \\

\longrightarrow\:\:\sf  \dfrac{dy}{dx}  = 6.5x^{4} + 4.3x^{2} - 3.2x^{1} + 2 \times 1  \\  \\

\longrightarrow\:\: \underline{ \boxed{\sf  \dfrac{dy}{dx}  = 30x^{4} + 12x^{2} - 6x + 2 }}  \\  \\


Anonymous: Perfect :)
Seafairy: well done:)
Answered by Seafairy
78

\text{(I)} y = x^{-3}

\text{It's given }y = x^{-3}

\frac{d}{dx}(x^n)= nx^{n-1}

\frac{d}{dx}(x^{-3})=(-3) x^{-3-1}

\implies -3x^{-4}      (\therefore a^{-b} = \frac{1}{a^b})

\boxed{\frac{dy}{dx} = \frac{-3}{x^4}}

________________________________

\text{(II)}6x^5+4x^3-3x^2+2x-7

\text{Let } y = 6x^5+4x^3-3x^2+2x-7

\frac{d}{dx}(6x^5) \implies \frac{d}{dx}(x^n)\implies nx^{n-1} \implies (5)6x^{5-1}

\frac{d}{dx}(4x^3) \implies \frac{d}{dx}(x^n)\implies nx^{n-1} \implies (3)4x^{3-1}

\frac{d}{dx}(-3x^2) \implies \frac{d}{dx}(x^n) \implies nx^{n-1}\implies (2)-3x^{2-1}

\frac{d}{dx}(2x) \implies \frac{d}{dx}(kx) \implies k \implies 2

\frac{d}{dx}(-7)\implies\frac{d}{dx}(k)\implies 0

\text{Now substitute the differentiated values}

= (5)6x^{5-1} + (3)4x^{3-1} - (2)3x^{2-1}+2 -0

= (5)6x^4 + (3)4x^2-(2)3x +2

\boxed{\frac{dy}{dx} = 30x^4+12x^2- 6x+2}


Anonymous: Almost Perfect :) . Use \displaystyle to make the characters clearer.
Seafairy: thank you :)
Anonymous: You're welcome ☺️
BrainlyKingdom: Hi, Kindly use \displaystyle function in LaTeX to increase the size of fractions. Although answer is nice
Seafairy: Okay Friend I'll use from next time :))
BrainlyKingdom: Good
SuitableBoy: Awesome ⚡
Seafairy: thank you :)
Similar questions