Math, asked by Srisaanth, 16 days ago

Pls help me prove this Trigonometry Sum...proper Answer will be marked brainliest ​

Attachments:

Answers

Answered by mathdude500
31

Given Question :-

Prove that

 \sf \: \dfrac{ {cos}^{3}A -  {sin}^{3}A}{cosA - sinA}  - \dfrac{ {cos}^{3}A +  {sin}^{3}A}{cosA + sinA}  = 2sinA \: cosA

 \green{\large\underline{\sf{Solution-}}}

Consider LHS

\rm :\longmapsto\: \sf \: \dfrac{ {cos}^{3}A -  {sin}^{3}A}{cosA - sinA}  - \dfrac{ {cos}^{3}A +  {sin}^{3}A}{cosA + sinA}

We know that,

 \red{\boxed{ \tt{ \:  {x}^{3} -  {y}^{3} = (x - y)( {x}^{2} + xy +  {y}^{2}) \: }}}

and

 \red{\boxed{ \tt{ \:  {x}^{3} + {y}^{3} = (x  +  y)({x}^{2}  -  xy +  {y}^{2})\: }}}

So, using these Identities, we get

\sf \:  =\dfrac{\cancel{(cosA - sinA)}({cos}^{2}A +  {sin}^{2}A + cosAsinA) }{\cancel{cosA - sinA}}   \: -  \:  \\  \sf \: \dfrac{\cancel{(cosA + sinA)}( {cos}^{2} A +  {sin}^{2} A - cosAsinA)}{\cancel{cosA + sinA}}

We know,

 \red{\boxed{ \tt{ \:  {sin}^{2}x +  {cos}^{2} x = 1 \: }}}

So, using this, we get

\sf \:  =  \: (1 + sinA \: cosA) - (1 - sinA \: cosA)

\sf \:  =  \:  \cancel{1} + sinA \: cosA - \cancel{1}  +  sinA \: cosA

\sf \:  =  \: 2 \: sinA \: cosA

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions