pls help me solve these questions
Answers
Answer:
4.x
x 3
x 3 −10x
x 3 −10x −53x−42
x 3 −10x −53x−42let p(x)=x
x 3 −10x −53x−42let p(x)=x −10x
x 3 −10x −53x−42let p(x)=x −10x −53x−42
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1)
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1)
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomial
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3 +x
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3 +x 2
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3 +x 2 −11x
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3 +x 2 −11x 2
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3 +x 2 −11x 2 −42x−11x−42
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3 +x 2 −11x 2 −42x−11x−42⇒x
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3 +x 2 −11x 2 −42x−11x−42⇒x 2
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3 +x 2 −11x 2 −42x−11x−42⇒x 2 (x+1)−11x(x+1)−42(x+1)
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3 +x 2 −11x 2 −42x−11x−42⇒x 2 (x+1)−11x(x+1)−42(x+1)⇒(x+1)(x
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3 +x 2 −11x 2 −42x−11x−42⇒x 2 (x+1)−11x(x+1)−42(x+1)⇒(x+1)(x 2
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3 +x 2 −11x 2 −42x−11x−42⇒x 2 (x+1)−11x(x+1)−42(x+1)⇒(x+1)(x 2 −11x−42)
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3 +x 2 −11x 2 −42x−11x−42⇒x 2 (x+1)−11x(x+1)−42(x+1)⇒(x+1)(x 2 −11x−42)x
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3 +x 2 −11x 2 −42x−11x−42⇒x 2 (x+1)−11x(x+1)−42(x+1)⇒(x+1)(x 2 −11x−42)x 2
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3 +x 2 −11x 2 −42x−11x−42⇒x 2 (x+1)−11x(x+1)−42(x+1)⇒(x+1)(x 2 −11x−42)x 2 −11x−42=x
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3 +x 2 −11x 2 −42x−11x−42⇒x 2 (x+1)−11x(x+1)−42(x+1)⇒(x+1)(x 2 −11x−42)x 2 −11x−42=x 2
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3 +x 2 −11x 2 −42x−11x−42⇒x 2 (x+1)−11x(x+1)−42(x+1)⇒(x+1)(x 2 −11x−42)x 2 −11x−42=x 2 −14x+3x−42
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3 +x 2 −11x 2 −42x−11x−42⇒x 2 (x+1)−11x(x+1)−42(x+1)⇒(x+1)(x 2 −11x−42)x 2 −11x−42=x 2 −14x+3x−42 =x(x−14)+3(x−14)
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3 +x 2 −11x 2 −42x−11x−42⇒x 2 (x+1)−11x(x+1)−42(x+1)⇒(x+1)(x 2 −11x−42)x 2 −11x−42=x 2 −14x+3x−42 =x(x−14)+3(x−14) =(x+3)(x−14)
x 3 −10x −53x−42let p(x)=x −10x −53x−42let x=−1p(−1)=(−1) −10(−1) −53(−1)−42 =−1−10+53−42 =0Hence (x+1) is factor of polynomialp(x)=x 3 +x 2 −11x 2 −42x−11x−42⇒x 2 (x+1)−11x(x+1)−42(x+1)⇒(x+1)(x 2 −11x−42)x 2 −11x−42=x 2 −14x+3x−42 =x(x−14)+3(x−14) =(x+3)(x−14)∴p(x)=(x+1)(x+3)(x−14)
plz mark me as BRAINLIEST
Answer:
please mark me as brainlist
Explanation:
please mark me as brainlist