Pls help me solve this! I’ll give u 50 points
Attachments:
Answers
Answered by
4
Step-by-step explanation:
hope it helps pls mark it as brainlist
Attachments:
Answered by
0
Answer:
given: a.sinθ+b.cosθ=c
To Prove: a.cosθ–bsinθ=±√(a²+b²–c²)
a.sinθ+b.cosθ=c (given)
on sq.ⁿ both sides:
(a.sinθ+b.cosθ)²=(c)²
or a².sin²θ+b².cos²θ+2a.sinθ.b.cosθ=c²
[∵sin²θ+cos²θ=1]
a²(1–cos²θ)+b²(1–sin²θ)+2sinθ.cosθ.ab=c²
a²–a.cos²θ+b²–b.sin²θ+2sinθ.cosθ.ab=c²
(a.cos²θ+b.sin²θ–2b.sinθ.a.cosθ)=a²+b²–c²
(a.cosθ–b.sinθ)²=a²+b²–c²
a.cosθ–b.sinθ=√(a²+b²–c²)=RHS
Hence, proved
Similar questions