Math, asked by cpvibhamenon, 3 months ago

pls help me thank you .....​

Attachments:

Answers

Answered by Mechyos
0

Step-by-step explanation:

log15√5 + log3√5 = 2

log(18√5)=2

18√5= x^2

x = 6.34

Answered by Arceus02
3

Given:-

  •  \sf log_{x}(15 \sqrt{5} )  = 2 -  log_{x}(3 \sqrt{5} )

To find:-

  • The value of x

Answer:-

Given that,

 \sf log_{x}(15 \sqrt{5} )  = 2 -  log_{x}(3 \sqrt{5} )

 \sf \longrightarrow   log_{x}(15 \sqrt{5} )  +  log_{x}(3 \sqrt{5} )  = 2

  {\blue{\bigstar}} \boxed{\sf{log_a (p) + log_a (q) = log_a(pq)}}

\sf \longrightarrow  log_{x}(15 \sqrt{5} \times 3 \sqrt{5}  )  = 2

\sf \longrightarrow  log_{x}(225)  = 2

Writing in exponential form,

\sf \longrightarrow  {x}^{2}  = 225

\sf \longrightarrow  x =  \pm 15

But \sf x is the base of a logarithm such as \sf log_x(15\sqrt{5}) or \sf log_x(3\sqrt{5}). And since the base of a logarithm can't be negative, we will consider only positive value.

\longrightarrow \underline{\underline{\sf{  \green{  x = 15  }  }}}

Similar questions