Math, asked by sumansandeepabgmail, 16 days ago

pls help me to find the answer of this question​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \tt{  \color{violet}{Re(z  + z^{2} )  =Im(z) }}

 \bold{ \leadsto \bf{ \pink{Let \:  \:  \: z = x + iy}}}

So,

 \sf{  Re(x + iy  + (x + iy)^{2} )  =Im(x + iy) }

 \sf{ \implies  Re(x + iy  + (x) ^{2}  +( iy)^{2} + 2 \cdot \: x \cdot \: iy )  =y }

 \sf{ \implies  Re(x + iy  + x^{2}   - y^{2} + 2 xy  \: i)  =y }

 \sf{ \implies  Re(x^{2}   - y^{2} + x + (y   + 2 xy)  \: i)  =y }

 \sf{ \implies  x^{2}   - y^{2} + x  =y }

 \sf{ \implies  x^{2}    + x  = {y}^{2} +  y }

 \sf{ \implies  x^{2}    +2 \cdot \dfrac{1}{2}  \cdot x  +   \left(\dfrac{1}{2}  \right)^{2}  = {y}^{2} +  2 \cdot \dfrac{1}{2}  \cdot y + \left(\dfrac{1}{2}  \right)^{2}  }

 \sf{ \implies     \left(x + \dfrac{1}{2}  \right)^{2}  = \left(y + \dfrac{1}{2}  \right)^{2}  }

 \sf{ \implies     x + \dfrac{1}{2}    =  \pm\left(y + \dfrac{1}{2}  \right)  }

 \sf{ \implies     x + \dfrac{1}{2}    = y + \dfrac{1}{2}   \:  \:  \:  \:  \: or \:  \:  \:  \:  \: x + \dfrac{1}{2}    =  - y  - \dfrac{1}{2}    }

 \sf{ \implies     y   = x   \:  \:  \:  \:  \: or \:  \:  \:  \:  \: x + y  + \dfrac{1}{2}     +  \dfrac{1}{2}  = 0   }

 \sf{ \implies     y   = x   \:  \:  \:  \:  \: or \:  \:  \:  \:  \: x + y  +1  = 0   }

Similar questions