Pls help me with question no.3
Attachments:
Answers
Answered by
5
Please put the identity A3 +B3 + C3=(a+b+c)(A2+B2+C2-ab-bc-ca)
Answered by
8
Q. Find the value of :
( x - y )³ + ( y - z )³ + ( z - x )³
Solution :
Let, ( x - y ) = A --------- ( 1 )
( y - z ) = B ----------- ( 2 )
( z - x ) = C --------- ( 3 )
Adding ( 1 ) , ( 2 ) and ( 3 ),
⇒ x - y + y - z + z - x = A + B + C
⇒ 0 = A + B + C
Now,
= A³ + B³ + C³
Using identity,
[ If , ( A + B + C = 0 ),then ( A³ + B³ + C³ = 3ABC ]
= 3ABC
Substitute the value of A , B and C.
= 3( x - y ) ( y - z ) ( z - x ).
The required factorisation is [ 3( x - y )( y - z )( z - x ) ].
( x - y )³ + ( y - z )³ + ( z - x )³
Solution :
Let, ( x - y ) = A --------- ( 1 )
( y - z ) = B ----------- ( 2 )
( z - x ) = C --------- ( 3 )
Adding ( 1 ) , ( 2 ) and ( 3 ),
⇒ x - y + y - z + z - x = A + B + C
⇒ 0 = A + B + C
Now,
= A³ + B³ + C³
Using identity,
[ If , ( A + B + C = 0 ),then ( A³ + B³ + C³ = 3ABC ]
= 3ABC
Substitute the value of A , B and C.
= 3( x - y ) ( y - z ) ( z - x ).
The required factorisation is [ 3( x - y )( y - z )( z - x ) ].
Anonymous:
Nice answer!
Similar questions