Math, asked by suhani2479, 1 month ago

Pls help me with step by step explanation

Attachments:

Answers

Answered by BlessedOne
43

Question 1 :

\sf\:\frac{2}{5} \times 5\frac{1}{5} is equal to :

Options :

(a) \sf\:\frac{26}{25}

(b) \sf\:\frac{52}{25} \sf\color{red}{\checkmark}

(c) \sf\:\frac{2}{5}

(d) \sf\:6

Solution :

\sf\:\frac{2}{5} \times 5\frac{1}{5}

Multiplying the numbers

\sf\longrightarrow\:\frac{2}{5} \times \frac{26}{5}

\small{\underline{\boxed{\mathrm{\longrightarrow\:\frac{52}{25}}}}} \sf\color{cyan}{⋆}

══════════════════════‎

Question 2 :‎

\sf\:3\frac{3}{4} \div \frac{3}{4} is equal to :

Options :

(a) \sf\:3

(b) \sf\:4

(c) \sf\:5 \sf\color{red}{\checkmark}

(d) \sf\:\frac{45}{16}

Solution :

\sf\:3\frac{3}{4} \div \frac{3}{4}

Multiplying the terms

\sf\longrightarrow\:\frac{15}{4} \div \frac{3}{4}

Converting ÷ into ×

\sf\longrightarrow\:\frac{15}{4} \times \frac{4}{3}

Multiplying

\sf\longrightarrow\:\frac{60}{12}

Reducing the fraction to lower terms

\sf\longrightarrow\:\cancel{\frac{60}{12}}

\small{\underline{\boxed{\mathrm{\longrightarrow\:5}}}} \sf\color{cyan}{⋆}

══════════════════════‎

Question 3 :‎

A ribbon of length \sf\:5\frac{1}{4} m is cut into small pieces each of length \sf\:\frac{3}{4} m. Number of pieces will be :

Options :

(a) 5

(b) 6

(c) 7 \sf\color{red}{\checkmark}

(d) 8

Solution :

Given -

  • Total length of ribbon = \sf\:5\frac{1}{4} m

  • Length of each ribbon pieces = \sf\:\frac{3}{4} m

So,

The number of pieces would be -

\sf\:\frac{Total~length~of~ribbon}{Length~of~each~pieces~of~ribbon}

Substituting the values

\sf\longrightarrow\:5\frac{1}{4} \div \frac{3}{4}

\sf\longrightarrow\:\frac{21}{4} \div \frac{3}{4}

Converting ÷ into ×

\sf\longrightarrow\:\frac{21}{4} \times \frac{4}{3}

\sf\longrightarrow\:\frac{84}{12}

Reducing the fraction to lower terms

\sf\longrightarrow\:\cancel{\frac{84}{12}}

\small{\underline{\boxed{\mathrm{\longrightarrow\:7}}}} \sf\color{cyan}{⋆}

══════════════════════‎

Question 4 :‎

The ascending arrangement of \sf\:\frac{2}{3} , \sf\:\frac{6}{7} , \sf\:\frac{13}{21} is :

Options :

(a) \sf\:\frac{6}{7} , \sf\:\frac{2}{3} , \sf\:\frac{13}{21}

(b) \sf\:\frac{13}{21} , \sf\:\frac{2}{3} , \sf\:\frac{6}{7} \sf\color{red}{\checkmark}

(c) \sf\:\frac{6}{7} , \sf\:\frac{13}{21} , \sf\:\frac{2}{3}

(d) \sf\:\frac{2}{3} , \sf\:\frac{6}{7} , \sf\:\frac{13}{21}

Solution :

Given - \sf\:\frac{2}{3} , \sf\:\frac{6}{7} , \sf\:\frac{13}{21}

So calculating the LCM of 3 , 7 and 21 we get 21

Now changing each of the fraction into an equivalent fraction having 21 as the denominator.

  • \sf\:\frac{2}{3} \times \frac{7}{7} = \frac{14}{21}

  • \sf\:\frac{6}{7} \times \frac{3}{3} = \frac{18}{21}

  • \sf\:\frac{13}{21} \times \frac{1}{1} = \frac{13}{21}

Clearly \sf\:\frac{13}{21} < \sf\:\frac{14}{21} < \sf\:\frac{18}{21}

Hence,

\bf\:\frac{13}{21} < \bf\:\frac{2}{3} < \bf\:\frac{6}{7} \sf\color{cyan}{⋆}

══════════════════════‎

Question 5 :

Reciprocal of the fraction \sf\:\frac{2}{3} is :

Options :

(a) \sf\:2

(b) \sf\:3

(c) \sf\:\frac{2}{3}

(d) \sf\:\frac{3}{2} \sf\color{red}{\checkmark}

Solution :

While finding the reciprocal of a fraction we just exchange the numerator and denominator. In simple words numerator becomes denominator and denominator becomes numerator.

So the reciprocal of the fraction \sf\:\frac{2}{3} is \sf\:\frac{3}{2} \sf\color{cyan}{⋆}

══════════════════════‎

Question 6 :

The product of \sf\:\frac{11}{13} and 4 is :

Options :

(a) \sf\:3\frac{5}{13} \sf\color{red}{\checkmark}

(b) \sf\:5\frac{3}{13}

(c) \sf\:13\frac{3}{5}

(d) \sf\:13\frac{5}{3}

Solution :

\sf\:\frac{11}{13} \times 4

Multiplying the numbers

\sf\:\longrightarrow\frac{44}{13}

Converting the fraction into mixed term

\small{\underline{\boxed{\mathrm{\longrightarrow\:3\frac{5}{13}}}}} \sf\color{cyan}{⋆}

══════════════════════‎

Similar questions