Math, asked by nishkasingh25, 4 months ago

Pls help me with this questio. pls its urgent.​

Attachments:

Answers

Answered by TRISHNADEVI
3

QUESTION :

 \\  \\

  \:  \:  \:  \:  \:  \bigstar \:  \:  \: \sf{ \large{If  \:  \: p  {}^{\frac{1}{x}} = q{}^{\frac{1}{y}} =   r {}^{\frac{1}{z}} \:  \: and \:  \: pqr = 1, \: prove \:  }} \\  \sf{ \large{that \:  \: x + y + z = 0}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

_________________________________________

IMPORTANT IDENTITIES :

 \\  \\

 1. \: \:  \boxed{ \rm{a {}^{m}  \times a {}^{n}  = a {}^{m + n}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ 2. \: \:  \boxed{ \rm{a {}^{0}  = 1}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \:  \:  \:  \:  \:  \: 3. \: \:  \boxed{ \rm{If \:  \: a {}^{m}  = b {}^{m}, \: then \:  \: m = n }}\\  \\ \:  \:  \:  \:  \:  \: 4. \: \:  \boxed{ \rm{If \:  \: a {}^{ \frac{1}{m} }  = b, \: then \:  \: a = b {}^m}}

_________________________________________

SOLUTION :

 \\  \\

Given :-

  •  \:  \bigstar \:  \: \sf{p  {}^{\frac{1}{x}} = q{}^{\frac{1}{y}} =   r {}^{\frac{1}{z}}}

  •   \:  \bigstar \:  \: \sf{pqr = 1}

 \\

To Prove :-

  •   \:   \bigstar \:  \: \sf{x + y + z = 0}

 \\

Proof :-

 \\

Let,

  •    \bigstar \:  \: \sf{ p{}^{\frac{1}{x}} = q{}^{\frac{1}{y}} =   r {}^{\frac{1}{z}} = k}

Then,

 \sf{ \therefore \:  \: p{}^{\frac{1}{x}} =k} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \: \\  \\   \sf{\implies \: p = k {}^{x}  \:  \:  \: [Using \:  \:  identiy \:  \:  (4)] \:  -  -  -  > (i)}

 \\

 \sf{\therefore \:  \: q{}^{\frac{1}{y}} =k}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \: \\  \\   \sf{\implies \: q = k {}^{y}  \:  \:  \: [Using \:  \:  identiy \:  \:  (4)] \:  -  -  -  > (ii)}

 \\

 \sf{\therefore \:  \: r{}^{\frac{1}{z}} =k} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \: \\  \\   \sf{\implies \: r = k {}^{z}  \:  \:  \: [Using \:  \:  identiy \:  \:  (4)] \:  -  -  -  > (iii)}

 \\

Multiplying eq. (i), eq. (ii) and eq. (iii), we get :-

 \\

 \bigstar \:  \:  \:  \sf{p \times q \times r = k {}^{x}  \times k {}^{y}  \times k {}^{z}} \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf{ \implies \: pqr = k {}^{(x + y + z)} \:  \: [Using \:  \:  identiy \:  \:  (1)]} \\  \\ \sf{ \implies \: 1 = k {}^{(x + y + z)}   \:  \:  \:  \:  \: [Given]}\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf{ \implies \: k {}^{0 }  =k {}^{(x + y + z)} \:  \:   \:[Using \:  \:  identiy \:  \:  (2)]}  \:  \\  \\  \sf{ \implies \:  \: 0 = x + y + z  \:  \: [Using \:  \:  identiy \:  \:  (3)]} \\  \\  \sf{ \therefore \:  \:  \underline{ \: x + y + z = 0 \: }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • ★ Hence, proved.
Answered by RvChaudharY50
10

Correct Question :- if p^(1/x) = q^(1/y) = r^(1/z) , and pqr = 1 , prove that, x + y + z = 0 .

Solution :-

Let us assume that,

→ p^(1/x) = q^(1/y) = r^(1/z) = k , (where k is a constant number.)

then,

→ p^(1/x) = k

→ p = k^x

similarly,

→ q^(1/y) = k

→ q = k^y

and,

→ r^(1/z) = k

→ r = k^z .

given that,

→ p * q * r = 1 .

putting above values we get,

→ k^x * k^y * k^z = 1

using a^l * a^m * a^n = a^(l + m + n) , we get,

→ k^(x + y + z) = 1

now, we know that, if power of a number is 0 , it is equal to 1,

therefore,

→ k^(x + y + z) = k^0

now, we know that, when base is same, powers are equal . { a^m = a^n => m = n }

hence,

→ (x + y + z) = 0 (Proved.)

Learn more :-

if the positive square root of (√190 +√ 80) i multiplied by (√2-1) and the

product is raised to the power of four the re...

https://brainly.in/question/26618255

Similar questions