Math, asked by PandaGirlYT, 4 months ago

pls help me with this question

Attachments:

Answers

Answered by Skyllen
5

Understanding the question:-

If we subtract a specific number from -8xy + 2x² + 3y², we will get x² + 2.

Solution :-

Let the unknown number be A.

Now, according to question,

(-8xy + 2x² + 3y²) - ( A ) = x²+2

-8xy + 2x² + 3y² - A = x² + 2

-8xy + 2x² - x² + 3y² - A = 2

-8xy + x² + 3y² - A = 2

A = -8xy + x² + 3y² - 2

So, if we subtract -8xy + x² + 3y² - 2 from -8xy + 2x² + 3y², we will get x²+2.

━━━━━━━━━━━━━━━━━

Check:-

(-8xy + 2x² + 3y²) - (-8xy + x² + 3y² - 2) = x²+2

-8xy + 2x² + 3y² + 8xy - x² - 3y² + 2 = x² + 2

-8xy + 8xy + 2x² -x² + 3y² - 3y² + 2 = x² + 2

x² + 2 = x² + 2

Hence Proved!

And so that our answer is correct.

Answered by Anonymous
3

\huge\sf{\underline{ \bold{Q}uestion}}:

What should be subtracted from (-8xy+2x²+3y²) to get (x²+2) ?⠀⠀

\large\bf{\underline{To \: find}} \: –

A number which when gets subtracted from -8xy+2x²+3y² gives the result as x²+2

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\huge\bold{\underline{\underline{Solution}}}:

let the number be 'p'.

Acc. to the question,

\sf (- 8xy +  {2x}^{2}  +  {3y}^{2}) - (p) =  {x}^{2}  + 2 \\   \\ \implies \sf - 8xy +  {2x}^{2}  +  {3y}^{2}  (- p) =  {x}^{2}  + 2 \\ \\ \implies \sf- 8xy +  {2x}^{2} - {x}^{2}   +  {3y}^{2}  (- p) = 2 \\  \\  \implies \sf- 8xy +  { {x}^{2}  +  {3y}}^{2}  (- p) = 2 \\  \\  \implies   \purple{\boxed{\bf\:p =  - 8xy +  {x}^{2}  +  {3y}^{2}  - 2}}

If we subtract (-8xy + + 3y² -2) from (-8xy + 2x² + 3y²), we get (+2).

_____________________________

\huge\green{\mathbb{\underline{{V}\large{ERIFICATION}}}:}

Here, the equation is –

(-8xy + 2x² + 3y²) - (-8xy + x² + 3y² - 2) = (x²+1)

⠀⠀⠀⠀⠀⠀⠀⠀⠀

LHS :

\sf (- 8xy + {2x}^{2}  +  {3y}^{2} ) - ( - 8xy +  {x}^{2}  +  {{3y}}^{2}  - 2) \\  \implies \sf - {{\large\not} 8xy} +  {2x}^{2}  +  {{\large{\not}{3y}^{2}}}  + {{ \large\not}8xy} - {x}^{2}  -  {{\large\not}{3y}^{2}}  + 2 \\  \implies \sf {2x}^{2}  -  {x}^{2}  + 2 \\  \implies  \sf{\underline{{x}^{2}  + 2}}

RHS :

\implies \sf{ \underline{ {x}^{2}  + 2}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀

LHS = RHS

hence verified!

⠀⠀⠀⠀i.e, our answer is correct :)

⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀✨HOPE IT HELPS✨

Similar questions