Math, asked by singhash030, 1 year ago

PLs help me with this question

Attachments:

Answers

Answered by Grimmjow
20

\sf{Given : psin\theta + qcos\theta = a}\\\\\\\textsf{Squaring on both sides, We get :}\\\\\\\sf{\implies (psin\theta + qcos\theta)^2 = a^2}\\\\\\\sf{\implies p^2sin^2\theta + q^2cos^2\theta + 2pqsin\theta cos\theta = a^2\;------\;[1]}


\sf{Given : pcos\theta - qsin\theta = b}\\\\\\\textsf{Squaring on both sides, We get :}\\\\\\\sf{\implies (pcos\theta - qsin\theta)^2 = b^2}\\\\\\\sf{\implies p^2cos^2\theta + q^2sin^2\theta - 2pqsin\theta cos\theta = b^2\;------\;[2]}


\textsf{Adding both Equations [1] and [2], We get :}


\sf{\implies p^2sin^2\theta + q^2cos^2\theta + 2pqsin\theta cos\theta + p^2cos^2\theta + q^2sin^2\theta - 2pqsin\theta cos\theta = b^2 + a^2}


\sf{\implies p^2sin^2\theta + q^2cos^2\theta + p^2cos^2\theta + q^2sin^2\theta = b^2 + a^2}\\\\\\\sf{\implies p^2(sin^2\theta + cos^2\theta) + q^2(sin^2\theta + cos^2\theta) = a^2 + b^2}\\\\\\\sf{\bigstar\;\;We\;know\;that : \boxed{\sf{sin^2\theta + cos^2\theta = 1}}}\\\\\\\sf{\implies p^2 + q^2 = a^2 + b^2}


\sf{Now, Consider :\;\dfrac{p + a}{q + b} + \dfrac{q - b}{p - a}}\\\\\\\textsf{Taking L.C.M of above Fractions, We get :}\\\\\\\sf{\implies \dfrac{(p + a)(p - a) + (q + b)(q - b)}{(q + b)(p - a)}}\\\\\\\implies \dfrac{p^2 - a^2 + q^2 - b^2}{(q + b)(p - a)}\\\\\\\sf{But,\;We\;found\;that : p^2 + q^2 = a^2 + b^2}\\\\\\\sf{\implies \dfrac{a^2 + b^2 - a^2 - b^2}{(q + b)(p - a)}}\\\\\\\sf{\implies \dfrac{0}{(q + b)(p - a)}}\\\\\\\sf{\implies 0}


singhash030: thank u very much
Answered by Avengers00
12
\underline{\underline{\huge{\textbf{Solution:}}}}

Given,

psin\: \theta + qcos\: \theta=a ———[1]

pcos\: \theta - qsin\: \theta=b ———[2]

\dfrac{p+a}{q+b}+\dfrac{q-b}{p-a} = ? ———[3]

\\

\underline{\huge{\textsf{Step-1:}}}
Simplify LHS of [3]

\dfrac{p+a}{q+b}+\dfrac{q-b}{p-a}

\dfrac{(p+a)(p-a)+(q+b)(q-b)}{(q+b)(p-a)}

\\

\underline{\huge{\textsf{Step-2:}}}
Using the Identity \mathbf{(a+b)(a-b)= a^{2}-b^{2}}

(p+a)(p-a) = (p^{2}-a^{2})
(q+b)(q-b) = (q^{2}-b^{2})

On Substituting,

\implies \dfrac{(p^{2}-a^{2})+(q^{2}-b^{2})}{(q+b)(p-a)}

\implies \dfrac{(p^{2}-a^{2})+(q^{2}-b^{2})}{(q+b)(p-a)}

\implies \dfrac{(p^{2}+q^{2})-(a^{2}+b^{2})}{(q+b)(p-a)} ———[4]

\\

\underline{\huge{\textsf{Step-3:}}}
Square on Both sides of eq. [1] & [2]

\implies (psin\: \theta + qcos\: \theta)^{2}=a^{2}

\implies (pcos\: \theta - qsin\: \theta)^{2}=b^{2}

\\

\underline{\huge{\textsf{Step-4:}}}
Using the Identities
\mathbf{(a+b)^{2} = a^{2}+b^{2}+2ab}
\mathbf{(a-b)^{2}= a^{2}+b^{2}-2ab}

\implies p^{2}sin^{2}\: \theta+q^{2}sin^{2}\: \theta+2pqsin\: \theta\, cos\: \theta = a^{2} ———[5]

\implies p^{2}cos^{2}\: \theta+q^{2}sin^{2}\: \theta - 2pqsin\: \theta\, cos\: \theta = b^{2} ———[6]

\\

\underline{\huge{\textsf{Step-5:}}}
Add Equations [5] & [6] to get a^{2}+b^{2}

\implies a^{2}+b^{2} = p^{2}sin^{2}\: \theta+q^{2}sin^{2}\: \theta + p^{2}cos^{2}\: \theta+q^{2}sin^{2}\: \theta

\implies a^{2}+b^{2} = p^{2}(sin^{2}\: \theta+cos^{2}\: \theta)+q^{2}(sin^{2}\: \theta+cos^{2}\: \theta)

\\

\underline{\huge{\textsf{Step-6:}}}
Using the Identity \mathbf{sin^{2}\: \theta+cos^{2}\: \theta= 1}

On Substituting

\implies a^{2}+b^{2} = p^{2}(1)+q^{2}(1)

\implies a^{2}+b^{2} = p^{2}+q^{2} ———[7]

\\

\underline{\huge{\textsf{Step-7:}}}
Substitute [7] in [4]

\implies \dfrac{(p^{2}+q^{2})-(p^{2}+q^{2})}{(q+b)(p-a)}

\implies \dfrac{0}{(q+b)(p-a)}

\implies 0

\therefore

\blacksquare \: \mathbf{\dfrac{p+a}{q+b}+\dfrac{q-b}{p-a} = \underline{\large{0}}}

singhash030: thank u
Similar questions