Math, asked by krishnasori22, 7 hours ago

Pls help me with this question.the question is in the attachment

Attachments:

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

 \tt{ \dfrac{dy}{dx} =  cos(x + y)  }

 \bf{Put \:  \:  \:  \: x + y = v}

 \bf{ \implies 1 +  \dfrac{dy}{dx} =  \dfrac{dv}{dx}}

So,

 \tt{ \dfrac{dv}{dx}  - 1=  cos(v)  }

 \tt{  \implies\dfrac{dv}{dx}  =  cos(v)  + 1  }

 \tt{  \implies\dfrac{dv}{1 +  cos(v) }  = dx  }

Integrating both sides,

 \displaystyle \tt{  \implies \int\dfrac{dv}{1 +  cos(v) }  = \int dx  }

 \displaystyle \tt{  \implies \int\dfrac{ \left( 1 -  cos(v) \right)dv}{ \left(1 +  cos(v)  \right) \left(1 -  cos(v)  \right)}  = x   + c_{1}}

 \displaystyle \tt{  \implies \int\dfrac{ \left( 1 -  cos(v) \right)dv}{  1 -  cos^{2} (v) }  = x   + c_{1}}

 \displaystyle \tt{  \implies \int\dfrac{  1 -  cos(v) }{  sin^{2} (v) } \:  dv = x   + c_{1}}

 \displaystyle \tt{  \implies \int\dfrac{  1 }{  sin^{2} (v) } \:  dv -  \int\dfrac{   cos(v)  }{  sin^{2} (v) } \:  dv = x   + c_{1}}

 \displaystyle \tt{  \implies \int  cosec^{2} (v)  \:  dv -  \int \: cosec(v) \: cot(v)  \:  dv = x   + c_{1}}

 \displaystyle \tt{  \implies  -  cot (v)   +cosec(v)  +c_{2}  = x   + c_{1}}

 \displaystyle \tt{  \implies  -  cot (x + y)   +cosec(x + y)   = x   + k}

Answered by mathdude500
6

Given Question :-

Solve the differential equation

 \purple{\rm :\longmapsto\:\dfrac{dy}{dx} = cos(x + y)}

 \red{\large\underline{\sf{Solution-}}}

Given differential equation is

 \purple{\rm :\longmapsto\:\dfrac{dy}{dx} = cos(x + y)}

To solve this Differential equation, we use the Method of Substitution.

So, Substitute

\rm :\longmapsto\:x + y = z

\rm :\longmapsto\:\dfrac{d}{dx}(x + y) = \dfrac{d}{dx}z

\rm :\longmapsto\:1 + \dfrac{dy}{dx} = \dfrac{dz}{dx}

 \purple{\rm :\longmapsto\: \dfrac{dy}{dx} = \dfrac{dz}{dx} - 1}

So, on substituting these values, the differential equation can be rewritten as

\rm :\longmapsto\:\dfrac{dz}{dx} - 1 = cosz

\rm :\longmapsto\:\dfrac{dz}{dx}  =1 +  cosz

\rm :\longmapsto\:\dfrac{dz}{1 + cosz}   = dx

can be further rewritten as

\rm :\longmapsto\:\dfrac{dz}{2 {cos}^{2} \dfrac{z}{2} }   = dx

\rm :\longmapsto\:\dfrac{1}{2} {sec}^{2}\dfrac{z}{2}dz = dx

On integrating both sides, we get

\rm :\longmapsto\:\dfrac{1}{2} \displaystyle\int {sec}^{2}\dfrac{z}{2}dz =  \displaystyle\int \: dx

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  \displaystyle\int \:  {sec}^{2}(ax + b) \: dx =  \frac{tan(ax + b)}{a} +  c}}}

So, using this, we get

\rm :\longmapsto\: tan \dfrac{z}{2} =  x + c

On substituting the value of z, we get

\rm :\longmapsto\: tan \bigg(\dfrac{x + y}{2} \bigg)=  x + c

Hence, Option (3) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions