Math, asked by GARVITATAL, 4 months ago

pls help with answer i will mark you as barinlist

Attachments:

Answers

Answered by rajchoubey452
2

Answer:

hope it's helpful

mark me brainlist please

Attachments:
Answered by Anonymous
38

Given:

 \\ \\

  • simplify the expression

 \\ \\

To Find:

 \\ \\

  • the simplified form of it using laws of exponents

 \\ \\

Solution:

 \\ \\

 \longrightarrow \sf ( \frac{1}{4}) ^{4} \times ( { \frac{1}{4} })^{3}  \times ( { \frac{3}{5} })^{12}   \div ( { \frac{3}{5} })^{5} \\  \\ \\  \\  \longrightarrow \sf \: ( { \frac{1}{4} })^{4 + 3}  \times ( { \frac{3}{5} })^{12 - 5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \\ \longrightarrow( { \frac{1}{4} })^{7}   \times  ( { \frac{3}{5} })^{7}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \\ \longrightarrow( \frac{1}{4}  \times  \frac{3}{5} ) ^{7}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \\ \longrightarrow \sf  \orange{\frac{3}{20} ^{7} \bigstar } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\ \\

More to know:

 \fbox \blue{laws \: of \: exponents : }

 \leadsto \sf \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}  \:  \:  \:  \:  \:  \\  \\ \leadsto \sf \:  {a}^{m}  \div  {a}^{n}  =  {a}^{m - n}   \:  \:  \:  \:  \:  \: \\  \\ \leadsto \sf \:  {a}^{0}  = 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \leadsto \sf ({a}^{m} ) ^{n}  =  {a}^{m \times n}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \leadsto \sf {a}^{m}  \times  {b}^{m}  =  ({a \times b})^{2}  \\  \\\leadsto \sf {a}^{m}   \div  {b}^{m}  =  (\frac{a}{b} ) ^{m}  \:  \:  \:  \:  \\  \\ \leadsto \sf {a}^{ - m}  =  \frac{1}{ {a}^{m} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions