Math, asked by adityaraj2765, 1 day ago

pls help with full process

Attachments:

Answers

Answered by rksc
1

Answer:

The integral is 8Sin^{-1}x  + 5\sqrt{1-x^{2} }

Step-by-step explanation:

\int {\frac{5x+8}{\sqrt{1-x^{2} } } } \, dx

The above integration will be solved by uv integration method.

\int{uv} \, dx

u\int{v} \, dx - \int{u^{'}\int{v} \, dx } \, dx

let u= 5x + 8  , v= 1/\sqrt{1-x^{2} }

\int {\frac{5x+8}{\sqrt{1-x^{2} } } } \, dx

5x+8\int{1/\sqrt{1-x^{2} } } \, dx - \int{\frac{d(5x+8)}{dx} \int{1/\sqrt{1-x^{2} }} \, dx } \,\ dx

(5x+8)Sin^{-1}x - \int{5* sin^{-1}  } \, dx

(5x+8)Sin^{-1}x- 5(xSin^{-1} x - \sqrt{1-x^{2} })

5xSin^{-1}x +8Sin^{-1}x - 5xSin^{-1}x + \sqrt{1-x^{2} }

8Sin^{-1}x + \sqrt{1-x^{2} }

Similar questions