Math, asked by kashishdesai, 9 months ago

pls if you dont know the answer,pls dont type anything​

Attachments:

Answers

Answered by RvChaudharY50
31

Gɪᴠᴇɴ :-

  • x + 1/x = 5

Tᴏ Fɪɴᴅ :-

  • x³ - 1/x³ = ?

Fᴏʀᴍᴜʟᴀ ᴜsᴇᴅ :-

  • (a + b)² = a² + b² + 2ab
  • a² + b² - 2ab = (a - b)²
  • (a - b)³ = a³ - b³ - 3ab(a - b)

Sᴏʟᴜᴛɪᴏɴ :-

➪ (x + 1/x) = 5

Squaring Both sides, we get,

➪ (x + 1/x)² = (5)²

➪ x² + 1/x² + 2 * x * 1/x = 25

➪ (x² + 1/x²) + 2 = 25

➪ (x² + 1/x²) = 25 - 2

➪ (x² + 1/x²) = 23

Subtracting 2 From Both sides Now,

➪ (x² + 1/x²) - 2 = 23 - 2

➪ (x² + 1/x²) - 2 * x * 1/x = 21

➪ (x - 1/x)² = 21

Square - Root Both sides Now,

➪ (x - 1/x) = √21 ------------ Eqn(1)

Cube Both sides Now,

➪ (x - 1/x)³ = (√21)³

➪ x³ - 1/x³ - 3 * x * 1/x * (x - 1/x) = 21√21

➪ (x³ - 1/x³) - 3(x - 1/x) = 21√21

Putting Value from Eqn(1) Now,

➪ (x³ - 1/x³) - 3 * √21 = 21√21

➪ (x³ - 1/x³) = 21√21 + 3√21

➪ (x³ - 1/x³) = 24√21 (Option A) (Ans.)


BrainlyRaaz: Perfect × Perfect :-P
RvChaudharY50: Thanks Bro. ❤️
Answered by Anonymous
32

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

 \star \: {\tt{x +  \frac{1}{x} = 5 }}\\

{\bf{\blue{\underline{To find:}}}}

 \star \: {\tt{ {x}^{3}   -   \frac{1}{ {x}^{3} } }}\\

{\bf{\blue{\underline{Now:}}}}

Take,

 \implies\: {\tt{x +  \frac{1}{x} = 5 }}\\

Squaring both side,

 \implies\: {\tt{ \big(x +  \frac{1}{x} \big)  ^{2} = ( {5}^{2} ) }}\\ \\

 \implies\: {\tt{  {x}^{2}  +  \frac{1}{ {x}^{2}  }  + 2 = 25}}\\ \\

 \implies\: {\tt{  {x}^{2}  +  \frac{1}{ {x}^{2}  }  = 25 - 2}} \\  \\

 \implies\: {\tt{  {x}^{2}  +  \frac{1}{ {x}^{2}  }  = 23}} \\  \\

Now it can be written as

 \implies\: {\tt{  {x}^{2}  +  \frac{1}{ {x}^{2}   }   - 2 \times x  \times \frac{1}{x} = 23 - 2}} \\  \\

 \implies\: {\tt{  \bigg( {x - \frac{1}{x}  } \bigg)  ^{2}  = 21}} \\  \\

 \implies {\boxed  {\tt{  \purple{ \: x -  \frac{1}{x} =  \sqrt{21} }}}}\\ \\

Cubing both side,

 \implies\: {\tt{ \big(x -  \frac{1}{x} \big) ^{3}  = ( \sqrt{21} ) ^{3} }} \\  \\

 \implies\: {\tt{  {x}^{3} - 3 \times  {x}^{2}  \times  \frac{1}{x}   + 3 \times x \times  \frac{1}{ {x}^{2} }   -  \frac{1}{ {x}^{3} }  = ( \sqrt{21} ) ^{3} }} \\  \\

 \implies\: {\tt{  {x}^{3} - 3x+ 3 \times   \frac{1}{ {x} }   -  \frac{1}{ {x}^{3} }  = ( \sqrt{21} ) ^{3} }} \\  \\

 \implies\: {\tt{  {x}^{3} - \frac{1}{ {x}^{3} }  - 3 \big(x -   \frac{1}{ {x} } \big )  = ( \sqrt{21} ) ^{3} }} \\  \\

We know that,

  {\boxed  {\tt{  \purple{ \:  x  -  \frac{1}{ x } =  \sqrt{21} }}}}

 \implies\: {\tt{  {x}^{3}  -  \frac{1}{ {x}^{3}  } - 3( \sqrt{21} )  = ( { \sqrt{21} )}^{3} }} \\  \\

 \implies\: {\tt{  {x}^{3}  -  \frac{1}{ {x}^{3}  }  =( { \sqrt{21} )}^{3}   + 3( \sqrt{21} )}} \\  \\

 \implies\: {\tt{  {x}^{3}  -  \frac{1}{ {x}^{3}  }  = \sqrt{21} \times(  \sqrt{21}   \times  \sqrt{21}  )    + 3( \sqrt{21} )}} \\  \\

 \implies\: {\tt{  {x}^{3}  -  \frac{1}{ {x}^{3}  }  =21 \sqrt{21}     +  3( \sqrt{21} )}} \\  \\

{\boxed  {\tt{  \purple{ \:   {x}^{3}  - \frac{1}{  {x}^{3}  } =  24\sqrt{21} }}}}


BrainlyRaaz: Latex Master ☺️
RvChaudharY50: Perfect. ❤️
Similar questions