Physics, asked by Userfriendly, 1 month ago

Pls integrate the function given in the picture, thankyou ​

Attachments:

Answers

Answered by Misspagli74
2

Total height =100m=S1+S2

Using equation of motion,

For first ball

S1=ut+21gt2

where,

S= Distance

u= Initial velocity

g= acceleration due to gravity

t= time

S1=0−21gt2

For second ball

S2=40t+21gt2

S2=40t−S1________(i)

Putting the value of S1 in equation (i)

S2+S1=40t

100=40t

t=2.5sec

Hence, two balls will meet after 2.5sec

Answered by Anonymous
65

The Given Integral is :-

  •  { \sf { \displaystyle { \int  \limits_{0}^{2} { \bigg [ x³ + 3 } \bigg ] \: dx } } }

Solution :-

Let us assume that ;

 { \sf { \displaystyle { I = \int \limits_{0}^{2} { \bigg [x³ + 3  } \bigg ]\: dx } } }

We knows that ;

 { \underline { \boxed { \sf { \bf { \displaystyle { \int {x}^{n} dx = \dfrac{{x}^{n+1}}{n+1} } } } } } }

 { \underline { \boxed { \sf { \bf { \displaystyle { \int a dx = ax } } } } } }

For some constant " a "

Now applying this same rule and separating the terms we have ;

 : \longmapsto { \displaystyle { \sf {  I = \bigg [ \int \limits_{0}^{2} { ( x³) } \: dx + \int \limits_{0}^{2} {3} \: dx } \bigg ] } }

 : \longmapsto { \displaystyle { \sf { I = \bigg [ \left|_{\:}^{\:} {\dfrac{{x}^{3+1}}{3+1}} \right|_{0}^{2} +  \left|_{\:}^{\:} {3x} \right|_{0}^{2} \bigg ] } } }

 : \longmapsto { \displaystyle { \sf { I = \bigg [ \left|_{\:}^{\:} {\dfrac{{x}^{4}}{4}} \right|_{0}^{2} +  \left|_{\:}^{\:} {3x} \right|_{0}^{2} \bigg ] } } }

Applying the limits we have ;

 { : \longmapsto { \displaystyle { \sf { I = { \bigg [ \dfrac{2⁴}{4} - \dfrac{0⁴}{4} } \bigg ] + { \bigg [ 3 × 2 - 3 × 0 } \bigg ] } } } }

 { : \longmapsto { \displaystyle { \sf { I = { \bigg [ \dfrac{16}{4} - 0 } \bigg ] + { \bigg [ 6 - 0 } \bigg ] } } } }

 { : \longmapsto { \displaystyle { \sf { I = { \bigg [ 4 - 0 } \bigg ] + { \bigg [ 6  } \bigg ] } } } }

 { : \longmapsto { \displaystyle { \sf { I = { \bigg [ 4 + 6 } \bigg ] } } } }

 { : \longmapsto { \displaystyle { \sf { I = { \bigg [ 10 } \bigg ] } } } }

 { : \longmapsto { \displaystyle { \sf { I = 10 } } } }

Now Add the Constant of Integration i.e C ;

 { : \longmapsto { \displaystyle { \sf { I = 10 + C } } } }

 { \underline { \boxed { \sf { \displaystyle { \therefore \int  \limits_{0}^{2} { \bigg [ x³ + 3 } \bigg ]\: dx = 10 + C } } } } }

Here , the given Integral Transforms to 10 + C

Henceforth , The Required Answer is 10 + C

Similar questions