Math, asked by prathamshetty874, 4 months ago

*pls intergrate this and Don't spam*

Attachments:

Answers

Answered by mathdude500
3

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

1. \:  \boxed{ \red{ \bf \:\dfrac{d}{dx} x \:  = 1}}

2. \:  \boxed{ \red{ \bf \:\dfrac{d}{dx} \dfrac{1}{x}  \:  =  - \dfrac{1}{ {x}^{2} } }}

3. \:  \boxed{ \red{ \bf \: \int\dfrac{dx}{ {x}^{2} +  {a}^{2}    } = \dfrac{1}{a} {tan}^{ - 1}\dfrac{x}{a}  + c }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

:  \implies  \tt \:Let \:  I \:  =  \int \: \dfrac{ {x}^{2} + 1 }{ {x}^{4} + 1 } dx

 \pink{ \sf \: on \: dividing \: numerator \: and \: denominator \: by \:  {x}^{2} }

:  \implies  \tt \: I =  \int \: \dfrac{1 + \dfrac{1}{ {x}^{2} } }{ {x}^{2} + \dfrac{1}{ {x}^{2} }  } dx

:  \implies  \tt \:  I = \int \: \dfrac{1 + \dfrac{1}{ {x}^{2} } }{ {x}^{2} + \dfrac{1}{ {x}^{2} } - 2 + 2  } dx

:  \implies  \tt \: I =  \int \: \dfrac{1 + \dfrac{1}{  {x}^{2} } }{  \bigg({x}  -  \dfrac{1}{ {x} } \bigg)^{2} + 2  } dx

 \red{ \sf \: Put \: x  -  \dfrac{1}{x}  = y}

:  \implies  \tt \: \dfrac{dy}{dx}  = 1  +  \dfrac{1}{ {x}^{2} }

:  \implies  \tt \: dy \:  = (1  +  \dfrac{1}{ {x}^{2} } )dx

:  \implies  \tt \: I =  \int \: \dfrac{dy}{ {y}^{2} + 2 }

:  \implies  \tt \: I =  \int \: \dfrac{dy}{ {y}^{2} +  {( \sqrt{2}) }^{2}  }

:  \implies  \tt \: I = \dfrac{1}{ \sqrt{2} }  {tan}^{ - 1}  \bigg(\dfrac{y}{ \sqrt{2} }  \bigg) + c

:  \implies  \tt \: I = \dfrac{1}{ \sqrt{2} }  {tan}^{ - 1}  \bigg(\dfrac{x - \dfrac{1}{x} }{ \sqrt{2} }  \bigg) + c

:  \implies  \tt \: I = \dfrac{1}{ \sqrt{2} }  {tan}^{ - 1}  \bigg(\dfrac{ {x}^{2} - 1 }{ \sqrt{2} x}  \bigg) + c

Similar questions