Math, asked by ahemant885, 8 months ago

pls pls pls pls pls pls pls pls pls pls pls anzwer Q-The sum of three numbers in A.P. is 36 and the sum of their squares is 450. Find the numbers.

Answers

Answered by Anonymous
3

\sf\blue{Question:}

\sf{The \ sum \ of \ three \ numbers \ in \ A.P.}

\sf{is \ 36 \ and \ the \ sum \ of \ their \ squares}

\sf{is \ 450. \ Find \ the \ numbers.}

__________________________________

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ numbers \ are \ 9, \ 12 \ and \ 15 \ or}

\sf{15, \ 12 \ and \ 9.}

\sf\orange{Given:}

\sf{\implies{The \ sum \ of \ three \ numbers \ in \ A.P.}}

\sf{is \ 36 \ and}

\sf{\implies{Sum \ of \ their \ squares \ is \ 450}}

\sf\pink{To \ find:}

\sf{The \ numbers.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let \ the \ three \ numbers \ of \ A.P. \ be}

\sf{(a-d), \ a \ and \ (a+d)}

\sf{According \ to \ the \ first \ condition.}

\sf{(a-d)+a+(a+d)=36}

\sf{\therefore{3a=36}}

\sf{a=\frac{36}{3}}

\sf{\therefore{a=12...(1)}}

\sf{According \ to \ the \ second \ condition.}

\sf{(a-d)^{2}+a^{2}+(a+d)^{2}}

\sf{By \ identity}

\sf{(a-b)^{2}=a^{2}-2ab+b^{2}}

\sf{(a+b)^{2}=a^{2}+2ab+b^{2}}

\sf{3a^{2}+d^{2}=450}

\sf{But \ a=12 \ from \ equation (1)}

\sf{3(12)^{2}+2d^{2}=450}

\sf{432+2d^{2}=450}

\sf{2d^{2}=450-432}

\sf{2d^{2}=18}

\sf{\therefore{d^{2}=\frac{18}{2}}}

\sf{\therefore{d^{2}=9}}

\sf{On \ taking \ square \ root \ on \ both \ sides.}

\sf{d=3 \ or \ -3}

\sf{If \ d =3 \ numbers \ are:}

\sf{a-d=12-3=9}

\sf{a=12}

\sf{a+d=12+3=16}

\sf{Numbers \ are \ 9, \ 12 \ and \ 15.}

\sf{If \ d=-3 \ numbers \ are:}

\sf{a-d=12-(-3)=15}

\sf{a=12}

\sf{a+d=12+(-3)=9}

\sf{Numbers \ are \ 14, \ 11 \ and \ 8.}

\sf\purple{\tt{\therefore{The \ numbers \ are \ 9, \ 12 \ and \ 15 \ or}}}

\sf\purple{\tt{15, \ 12 \ and \ 9.}}

Answered by TheSentinel
38

\color{darkblue}\underline{\underline{\sf Question:}}

\rm{Find \  three \ numbers \ in \ A.P. \ such}

\rm{that \ their \  sum \  is \ 36 \ and \ the \   sum  \ of \ their}

\rm{squares \  is \  450}

__________________________________________

\color{green}\underline{\underline{\sf Answer:}}

\sf\large\underline\purple{The \ three \ numbers \ are \ 9 , \ 12 ,\ 15}

__________________________________________

\color{red}\underline{\underline{\sf given:}}

\rm{The \ sum \ of \ three \ numbers : \ 36}

\rm{\ Sum \ of \ square \ of \ three \ numbers : \ 450}

__________________________________________

\color{orange}\underline{\underline{\sf To \ find:}}

\rm{Find \ the \ three \ numbers}

__________________________________________

\color{blue}\underline{\underline{\sf solution:}}

\sf\large\underline{let ,}\rm/{The \ three \ numbers \ are :}

a \: (a + d) \: (a + 2d)

\rm{As \ pr \ given,}

a + (a + d) + (a + 2d) = 36

........................................(1)

\rm{and,}

 {a}^{2}  +  {(a + d)}^{2}  +  {(a + 2d)}^{2}  = 450

........................................(2)

\rm{According \ to \ first \ condition}

3a + 3d = 36

3(a + d) = 36

a + d =  \frac{36}{3}

a + d = 12

\rm{According \ to \ second \ condition}

 {a}^{2}  +  {12}^{2}  +  {(12 + d)}^{2}  = 450

 {a}^{2}  + 144 + 144 + 24d +  {d}^{2}  = 450

 {a}^{2}  + 24d +  {d}^{2}  = 450 - 144 - 144

 {a}^{2}  + 24d +  {d}^{2}  = 162

\rm{We \ know ,}

d = 12 - a

\rm{putting \ this \ value \ in \ above \ equation}

 {(12 - d)}^{2}  + 24d +  {d}^{2}  = 162

144 - 24d + 24d + {d}^{2} +  {d}^{2}  = 162

2( {d}^{2}  )= 162 - 144 = 18

 {d}^{2}  =  \frac{18}{2}

 {d}^{2}  = 9

d = 3

a = 12 - 3 = 9

\rm{The \ three \ numbers \ are,}

a = 9

a + d = 12

a + 2d = 9 + 2(3) = 15

\sf\large\underline\purple{The \ three \ numbers \ are \ 9 , \ 12 ,\ 15}

__________________________________________

\rm\red{Hope \ it \ helps \ :))}

Similar questions