Math, asked by jeetendranihalani, 10 months ago

pls pls pls pls pls pls pls pls pls pls pls pls pls pls pls pls pls pls pls pls answer this

Question no.5​

Attachments:

Answers

Answered by umiko28
3

Answer:

\huge\underline{ \underline{ \red{your \: \: answer}}}

Step-by-step explanation:

 \bf\red{ \mapsto \:  {4x}^{2}  + 4 \sqrt{3}x + 3 = 0} \\  \\  \bf\pink{ \mapsto \:  \frac{ {4x}^{2} }{4}  +   \frac{4 \sqrt{3}x }{4}   +  \frac{3}{4}  = 0} \\  \\  \bf\blue{ \mapsto \:  {x}^{2} +  \sqrt{3}x +  \frac{3}{4}   = 0 } \\  \\  \bf\orange{ \mapsto \: {x}^{2}   + 2.x \frac{ \sqrt{3} }{2} +  ({ \frac{ \sqrt{3} }{2}  })^{2}   -  ({ \frac{ \sqrt{3} }{2} })^{2}  +  \frac{3}{4}  = 0}  \\  \\  \bf\green{ \mapsto \: {(x +  \frac{ \sqrt{3} }{2} )}^{2} =  ({ \frac{ \sqrt{3} }{2} })^{2}  -  \frac{3}{4}   } \\  \\  \bf\pink{ \mapsto \: {x +  (\frac{ \sqrt{3} }{2} })^{2} =  \frac{3}{4}   -  \frac{3}{4}  } \\  \\  \bf\red{ \mapsto \:  {(x +  \frac{ \sqrt{3} }{2} )}^{2}  = 0} \\  \\  \bf\purple{ \mapsto \: {(2x +  \sqrt{3} )}^{2}   = 0} \\  \\  \bf\red{ \mapsto \: (2x +  \sqrt{3} )(2x +  \sqrt{3} ) = 0} \\  \\  \bf\blue{  2x +  \sqrt{3} \implies\:0 } \\  \\  \bf\pink{ \mapsto \:x =  \frac{ -  \sqrt{3} }{2}  } \\  \\ \bf\orange{  2x +  \sqrt{3} \implies\:0 } \\  \\  \bf\green{ \mapsto \:x =  \frac{ -  \sqrt{3} }{2} }

\large\boxed{ \fcolorbox{red}{lime}{hope \: it \: help \: you}}

Similar questions