pls prove √2 irrational
Answers
Answered by
2
Answer:
Let us assume √2 is rational number.
a rational number can be written into he form of p/q
√2=p/q
p=√2q
Squaring on both sides
p²=2q²__________(1)
.·.2 divides p² then 2 also divides p
.·.p is an even number
Let p=2a (definition of even number,'a' is positive integer)
Put p=2a in eq (1)
p²=2q²
(2a)²=2q²
4a²=2q²
q²=2a²
.·.2 divides q² then 2 also divides q
Both p and q have 2 as common factor.
But this contradicts the fact that p and q are co primes or integers.
Our supposition is false
.·.√2 is an irrational number.
Hope this helps you
Thanks
Similar questions
History,
4 months ago
Geography,
9 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Math,
1 year ago