Pls prove it using $ identity sec*2theta = 1+ tan*2theta.
Attachments:
Answers
Answered by
0
HEY MATE HERE IS YOUR ANSWER
SEE THE ATTACHMENT
HOPE THIS MAY HELP YOU
Attachments:
Answered by
127
Question :-- Prove that (sin A-cos A+1)/(sin A+cosA-1)=1/(sec A-tan A)
Formula used :---
- 1 = sec²A - tan²A = (secA + TanA)
- SinA/cosA = TanA
- 1/CosA = SecA
Solution :---
Dividing the L.H.S. Numerator and denominator by cos A we get,
→ (tan A-1+secA)/(tan A+1-sec A)
→ (tan A-1+secA)/(1-sec A+tan A)
Now , Putting 1 = (sec A+tan A)(secA-tanA) in Denominator , we get,
→(sec A+tan A-1)/[(sec A+tan A)(sec A-tan A)-(sec A-tan A)]
Taking (secA-tanA) common From Denominator now ,
→ (sec A+tan A-1)/(sec A-tan A)(sec A+tan A-1)
→ 1/(sec A-tan A) = R.H.S
✪✪ Hence Proved ✪✪
Similar questions