Math, asked by Shubusingh58, 1 year ago

Pls..prove this....[tanx secx -1] / [tanx -secx 1]= tanx secx ....

i am confused

Answers

Answered by ans81
29
HEY MATE HERE IS YOUR ANSWER

 \frac{(tan \: x \: + sec \: x - 1)}{(tan \: x - sec \: x \: + 1)}

 = \frac{sin \frac{x}{cos + \frac{x + 1}{cosx - 1} } }{sin \frac{x}{cos \frac{x - 1}{cosx \: + 1} } }

 = \frac{tan \: x \: = \: sin \: x}{cos \: x \: = sin \: \frac{x = 1}{cos \: x} }
 = \frac{sin \: x - cos \: x + 1sin \: x + cos \: x - 1}{sin \: x \: - cos \: x + 1sin \: x \: - cos \: x + 1}

 = \frac{sin \: x - cos \: x \: + 1}{sin \: x \: + cos \: x \: - 1}

 = \frac{2sin \frac{x}{2} cos \: \frac{x}{2} }{}

 = \frac{2sin \frac{x}{2} cos \: \frac{x}{2} }{1 - (1 - 2sin \frac{x}{2} )}

 \frac{2 \: sin \: ( \frac{x}{2}cos( \frac{x}{2}) }{2 \: sin \: (2 \frac{x}{2} )}

 = cos \: \frac{x}{2} sin \frac{x}{2}

 = \frac{1 + sin(x)}{cos(x)}

 = \frac{1}{cos(x)} + \frac{sin(x)}{cos(2)}
 = 2sec(x) + tan(2)

 = tan(x) + sec(x)

Hope it will help you

Kanchan57: Awesome !!
Answered by Anonymous
7
\huge{Hey Mate!!!}

Here is ur answer ⏬⏬⏬⏬⏬

❇➡ (tan x+sec x-1)/(tan x-sec x+1)

=(sin x/cos x+1/cos x-1)/(sin x/cos x-1/cos x+1)          [tan x=sin x/cos x &sec x=1/cos x]

={(sin x+1-cos x)/cos x}/{(sin x-1+cos x)/cos x}

=(sin x-cos x+1)/(sin x+cos x-1)

={(sin x-cos x+1)+(sin x+cos x-1)}/{(sin x-cos x+1)-(sin x+cos x-1)}    [by componendo dividendo]

=(sin x-cos x+1+sin x+cos x-1)/(sin x-cos x+1-sin x-cos x+1)

=2sin x/(2-2cos x)

=2sin x/2(1-cos x)

=sin x/(1-cos x)

=2sin (x/2)cos( x/2)/[1-{1-2sin2(x/2)}]     [since,sin x=2sin (x/2)cos (x/2) ]

=2sin (x/2)cos (x/2) / 2sin2(x/2)

=cos (x/2) / sin x/2

={cos (x/2)+sin (x/2)}/{cos (x/2)-sin (x/2)}     [by componendo dividendo]

=[{cos (x/2)+sin (x/2)}{cos (x/2)+sin (x/2)}] / [{cos( x/2)-sin (x/2)}{cos (x/2)+sin (x/2)}]   [rationalise]

={cos2(x/2)+sin2(x/2)+2sin (x/2)cos (x/2)} / {cos2(x/2)-sin2(x/2)}

=(1+sin x)/cos x

=1/cos x+sin x/cos x

=sec x+tan x

=tan x+sec x

Hope it helps.

Cheers!!!!!!!!!!!!
Similar questions