Math, asked by aashi2004jain, 9 months ago

pls refer the picture for the question.​

Attachments:

Answers

Answered by BrainlyPopularman
3

{ \bold{ \underline{given} : -  }} \\  \\ { \bold{x + iy =  \frac{ {( {a}^{2} + 1) }^{2} }{2a - i}}} \\  \\  \\  \\ { \bold{ \underline{to \:  \: find} : -  }}   \\ { \bold{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  {x}^{2}  +  {y}^{2} }} \\  \\ \\  { \bold{ \huge{ \underline{solution} :  - }}} \\  \\ { \bold{ \implies \: x + iy =  \frac{ {( {a}^{2} + 1) }^{2} }{2a - i} }} \\  \\ { \bold{ \implies \: x - iy \:  \:  =  \frac{ {( {a}^{2}  + 1)}^{2} }{2a  + i} }} \\  \\  \\  { \bold{  \:  \:  \:  \: . \:  \: now \:  \: multiply \:  \: these \:  \: equation - }} \\  \\ { \bold{ \implies {x}^{2}  -  {(i)}^{2}  {y}^{2}   =  \frac{ {( {a}^{2} + 1) }^{4} }{(2a + i)(2a - i)}   }} \\  \\ { \bold{ \implies \:  {x}^{2}  +  {y}^{2}  =  \frac{ { ({a}^{2} + 1) }^{4} }{ {4 {a}^{2}  + 1} } }}

Similar questions