Math, asked by Anonymous, 9 months ago

pls refer to the attachment​

Attachments:

Answers

Answered by VishnuPriya2801
18

Answer:-

Given:

  • a , b , c -- AP

As we know, d (Common difference) = b - a (or) c - b

b - a = c - b

=> a - b = b - c -- equation (1)

And,

- b - b = - c - a

2b = a + c -- equation (2)

  • x , y , z -- GP

=> y² = xz -- equation (3)

 {x}^{b - c}  \times  {y}^{c - a}  \times  {z}^{a - b}  = 1 \\  \\ Substitute \: \:(b  - c)\: \: value \: here, \\  \\  {x}^{a - b}  \times  {z}^{a - b}  \times  {y}^{c - a}  = 1 \\  \\

By using aⁿ * bⁿ = (ab)ⁿ,

 {(xz)}^{(a - b)}  \times  {(y)}^{(c - a)} = 1 \\  \\ Substitute \: \:(xz)\: \:value \: here, \\  \\  { ({y}^{2}) }^{(a - b)}   \times  {y}^{(c - a)} = 1  \\  \\  {(y)}^{(2a - 2b)}  \times  {y}^{(c - a)}  = 1  \:  \:  \: ( { {a}^{m} })^{n}  =  {a}^{mn} \\  \\

Now,

By using a^m* a^n = a^ (m + n)

 {y}^{(2a - 2b + c - a)}  = 1 \\  \\  {y}^{(a  +c - 2b )}  = 1 \\  \\ Substitute \:\: (a + c) \:\: value \: here,\\  \\  {y}^{(2b - 2b)}  = 1 \\  \\  {y}^{0}  = 1 \\  \\ 1 = 1 \:  \: ( {a}^{0}  = 1)

Hence, LHS = RHS.


Anonymous: Nuvvu thop :)
Similar questions