Pls reply fast......
Attachments:
![](https://hi-static.z-dn.net/files/ddd/127d906ea54b3d6e1a96fc57731b95e2.jpg)
Answers
Answered by
0
We know that acceleration = dv/dt
Therefore,
![\frac{dv}{dt} =k x^{2} \frac{dv}{dt} =k x^{2}](https://tex.z-dn.net/?f=+%5Cfrac%7Bdv%7D%7Bdt%7D+%3Dk+x%5E%7B2%7D+)
now, multiply the ohs and res with dx,
![dx \frac{dv}{dt} =k x^{2} dx dx \frac{dv}{dt} =k x^{2} dx](https://tex.z-dn.net/?f=dx+%5Cfrac%7Bdv%7D%7Bdt%7D+%3Dk+x%5E%7B2%7D+dx)
we know that dx/dt= velocity
therefore,
![vdv=k x^{2} dx vdv=k x^{2} dx](https://tex.z-dn.net/?f=vdv%3Dk+x%5E%7B2%7D+dx)
Now integrate:
![\int\limits {v} \, dv=k \int\limits { x^{2} } \, dx \int\limits {v} \, dv=k \int\limits { x^{2} } \, dx](https://tex.z-dn.net/?f=+%5Cint%5Climits+%7Bv%7D+%5C%2C+dv%3Dk+%5Cint%5Climits+%7B+x%5E%7B2%7D+%7D+%5C%2C+dx+)
![\frac{ v^{2} }{2}=k \frac{ x^{3} }{3}+c \frac{ v^{2} }{2}=k \frac{ x^{3} }{3}+c](https://tex.z-dn.net/?f=+%5Cfrac%7B+v%5E%7B2%7D+%7D%7B2%7D%3Dk+%5Cfrac%7B+x%5E%7B3%7D+%7D%7B3%7D%2Bc)
Hence, v is directly proportional to
Therefore,
now, multiply the ohs and res with dx,
we know that dx/dt= velocity
therefore,
Now integrate:
Hence, v is directly proportional to
Similar questions
Math,
8 months ago
Math,
8 months ago
Hindi,
1 year ago
Environmental Sciences,
1 year ago
History,
1 year ago