Math, asked by CRM, 1 year ago

Pls send answer fast

Attachments:

Answers

Answered by UnknownDude
1
[0010001111]... Hello User... [1001010101]
Here's your answer...

 \frac{1 }{ \sqrt{2}  +  \sqrt{3} }  -  \frac{1}{ \sqrt{2}  -  \sqrt{3} }  \\  =  \frac{ (\sqrt{2} -  \sqrt{3})  - ( \sqrt{2 } +  \sqrt{3}  ) }{( \sqrt{2}   -  \sqrt{3}) ( \sqrt{2} +  \sqrt{3} ) }  \\  =  \frac{ \sqrt{2} -  \sqrt{3}  -  \sqrt{2} -  \sqrt{3}   }{ { \sqrt{2} }^{2}  -  { \sqrt{3} }^{2} }  \\  =  \frac{ - 2 \sqrt{3} }{2 - 3}  \\  =  \frac{ - 2 \sqrt{3} }{ - 1 }  \\  = 2 \sqrt{3}
[0110100101]... More questions detected... [010110011110]
//Bot UnknownDude is moving on to more queries
//This is your friendly neighbourhood UnknownDude

BhawnaAggarwalBT: give a easy solution
BhawnaAggarwalBT: i have
Answered by HimanshuR
0

 \frac{1}{ \sqrt{2} +  \sqrt{3}  }  -  \frac{1}{ \sqrt{2} -  \sqrt{3}  }  \\  =  \frac{1}{ \sqrt{2} +   \sqrt[]{3}  }  \times   \frac{ \sqrt{2} -  \sqrt{3}  }{ \sqrt{2 }  -  \sqrt{3} }  -  \frac{1}{ \sqrt{2} -  \sqrt{3}  }  \times  \frac{ \sqrt{2}  +  \sqrt{3} }{ \sqrt{2} +  \sqrt{3}  }  \\  =   \frac{ \sqrt{2} -  \sqrt{3}  }{( \sqrt{2) {}^{2}  } -  (\sqrt{3}) {}^{2}   }  -  \frac{ \sqrt{2 } +  \sqrt{3}  }{( \sqrt{2) {}^{2}   }  - ( \sqrt{3) {}^{2} } }  =  \frac{ \sqrt{2}  -  \sqrt{3}  }{2 - 3}  -  \frac{ \sqrt{2}  +  \sqrt{3} }{2 - 3}  \\  =  \frac{ \sqrt{2} -  \sqrt{3}  }{ - 1}  -  \frac{ \sqrt{2} +  \sqrt{3}  }{ - 1}  \\  =  \frac{  - \sqrt{ 2}  +  \sqrt{3}  }{1}  +  \frac{ \sqrt{2} +  \sqrt{3}  }{1}  \\  = 2 \sqrt{ 3}
Similar questions