Math, asked by vivyvyv, 2 months ago

Pls send answer fast thx

Attachments:

Answers

Answered by 12thpáìn
4

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c | }  \\ \bf{Part  \: A} & \bf \footnotesize{The \:  decimal \:  form  \: of \:  the \:  rational \:  number \:  \dfrac{3}{40} \: is \: \gray{ \normalsize{ 0.075 }}} \\  \\   \hline \\  \bf{Part  \: B}& \:  \bf \footnotesize{The \: value \: of \:  \dfrac{1}{ \sqrt[4]{(9)^{ - 2} } } \: is \: \normalsize 3    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  } \\  \\ \hline \\ { \bf Part  \:C \: }&  \:  { \bf\footnotesize{On \:  simplifying  \:  \: (5+3 \sqrt{7} ) + (12 - 3 \sqrt{7}) \: we \: get \: \normalsize{ 17 }. \:  \:  \:  \:  \:  \:  \:  \:  }}    \\  \\ \end{array}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Answer :

{ \bf{Part  \: A \:  | \:  \footnotesize{The \:  decimal \:  form  \: of \:  the \:  rational \:  number \:  \dfrac{3}{40} \: is \: \gray{ \normalsize{ 0.075 }}}}}

{ \bf{Part  \: B \:  | \:  \footnotesize{The \: value \: of \:  \dfrac{1}{ \sqrt[4]{(9)^{ - 2} } } \: is \: \normalsize 3   }}}

Step by step Explanation

{ \sf  \:  \:  \:  \:  \:   :  \:  \:  \implies\dfrac{1}{ \sqrt[4]{(9)^{ - 2} } }}

{ \sf  \:  \:  \:  \:  \:   :  \:  \:  \implies\dfrac{1}{ \sqrt[ \cancel4]{(9)^{ \cancel{ - 2}} } }}

{ \sf  \:  \:  \:  \:  \:   :  \:  \:  \implies\dfrac{1}{ \sqrt{9^{  - 1} } }}

{ \sf  \:  \:  \:  \:  \:   :  \:  \:  \implies\dfrac{1}{  {3}^{ - 1  } }}

{ \sf  \:  \:  \:  \:  \:   :  \:  \:  \implies\dfrac{1}{   \dfrac{1}{3}  }}

{ \sf  \:  \:  \:  \:  \:   :  \:  \:  \implies3}

{ \bf Part  \:C \: } | \:  { \bf\footnotesize{On \:  simplifying  \:  \: (5+3 \sqrt{7} ) + (12 - 3 \sqrt{7}) \: we \: get \: \normalsize{ 17 }. }}

{~~~\sf ~~:~~\implies (5+3 \sqrt{7} ) + (12 - 3 \sqrt{7})}

{~~~~\sf ~:~~\implies 5+ \cancel{3 \sqrt{7}} + 12 \cancel{ - 3 \sqrt{7}}}

{~\sf ~~~~:~~\implies 17}

Similar questions