Math, asked by shwetarax, 6 months ago

pls send the written solution ​

Attachments:

Answers

Answered by Anonymous
1

Solution:

We have

 \rm \implies \:  \dfrac{3t - 2}{4}  -  \dfrac{2t + 3}{3}  =  \dfrac{2}{ 3}  - t

Now take lcm

 \rm \implies  \dfrac{3(3t - 2)}{4 \times 3}  -  \dfrac{4(2t + 3)}{3 \times 4}  =  \dfrac{2 \times 1}{ 3\times 1}  -  \dfrac{t \times 3}{1 \times 3}

 \rm \implies \:  \dfrac{9t - 6}{12}  -  \dfrac{8t + 12}{12}  =   \dfrac{2 - 3t}{3}

 \rm \implies \:  \dfrac{9t - 6 - 8t - 12}{ \cancel{12}}  =  \dfrac{2 - 3t}{ \cancel3}

 \rm \implies \dfrac{t - 18}{4}  = 2 - 3t

 \rm \implies \: t - 18 = 4(2 - 3t)

 \implies \rm \: t - 18 = 8 - 12t

 \rm \implies \: t + 12t = 18 + 8

 \implies \rm \: 13t = 26

 \implies \rm \: t =  \dfrac{26}{13}

 \rm \implies \: t = 2

Now check our answer

Take

 \rm \implies \:  \dfrac{3t - 2}{4}  -  \dfrac{2t + 3}{3}  =  \dfrac{2}{ 3}  - t

and put t = 2

 \rm \implies \:  \dfrac{3 \times 2 - 2}{4}  -  \dfrac{2 \times 2 + 3}{3}  =  \dfrac{2}{ 3}  - 2

 \implies \:  \dfrac{6 - 2}{4}  -  \dfrac{4 + 3}{3}  =  \dfrac{2 -2 \times 3 }{3}

 \implies \:  \dfrac{4}{4}  -  \dfrac{7}{3}  =  \dfrac{2 - 6}{3}

 \implies \: 1 -  \dfrac{7}{3}  =   - \dfrac{4}{3}

 \rm \implies \:  \dfrac{3 - 7}{3}  =  -  \dfrac{4}{3}

 \rm \implies \:  \dfrac{ - 4}{3}   =  \dfrac{ - 4}{3}

Hence LHS = RHS

Answered by Anonymous
1

Answer:

-4/3 = -4/3

Step-by-step explanation:

.

Answer by @MrMysteryy

Similar questions