Math, asked by tanushkatyal2008, 1 month ago

Pls show solving and step by step explanation

Attachments:

Answers

Answered by shashi1979bala
0

So, We have to know the 2 angles of quadrilateral given here other than x.

\rm\green{\angle BFE~=~60°}

\rm{\angle ABF~=~70°}

\rm{\angle ABF~+~\angle FBC~=~180°(Linear~pair)}

\rm{\angle FBC~+~70°~=~180°}

\rm\green{\angle FBC~=~110°}

\rm{\angle CEF~+~\angle DEC~=~180°~(Linear~pair~)}

\rm{\angle CEF~+~60~=~180}

\rm\green{\angle CEF~=~120°}

We know that sum of all angles of quadrilateral is 360°

So,

\rm{60°~+~120°~+~110°~+~x~=~360°}

\rm{290~+~x~=~360}

\rm{x~=~360~-~290}

\rm\pink{x~=~70°}

\fbox\blue{.°.~Value~of~x~=~70°}

_______________________

\red{\sf\frak{-~shashi1979bala}}

Answered by saranyaap21
1

Answer:

option b.

Step-by-step explanation:

ABC and FED are straight lines

The angle of the straight line is 180°

so,∆ABF+∆CBF=180°

70°+∆CBF=180°

∆CBF=180°-70°

Therefore, ∆CBF=110°

Similarly ,∆CEF+∆DEC=180°

∆CEF+60°=180°

∆CEF=180°-60°

Therefore, ∆CEF=120°

TRIANGLE BCEF = 360°

∆CBF+∆BFE+∆CEF+∆ECB=360°

110°+60°+120°+ x=360°

x=360°-110°-60°-120°

x=360°-290°

Therefore, x=70°

Similar questions