Math, asked by Ranjit121212, 1 year ago

pls solve 17 and 18 .both parts.

Attachments:

Answers

Answered by AkshithaZayn
2
Hey there!

17.
( \sqrt{32} - \sqrt{5} ) {}^{ \frac{1}{3} } ( \sqrt{32} + \sqrt{5} ) {}^{\frac{1}{3} }

(4 \sqrt{2} - \sqrt{5} ) {}^{ \frac{1}{3} } (4 \sqrt{2} + \sqrt{5} ) {}^{ \frac{1}{3} }

((4 \sqrt{2} - \sqrt{5} )(4 \sqrt{2} + \sqrt{5} )) {}^{ \frac{1}{3} }

using (a-b)(a+b) = a²  - b² 

(16 \times 2 - 5) {}^{ \frac{1}{3} }

27 {}^{ \frac{1}{3} }
(3 {}^{3} ) {}^{ \frac{1}{3} }

= 3

18.
( \frac{x {}^{m} }{x {}^{n} } ) {}^{l}( \frac{x {}^{n} }{x {}^{l} } ) {}^{m}( \frac{x {}^{l} }{x {}^{m} }) {}^{n}

(x {}^{m - n}) {}^{l} (x {}^{n - l} ) {}^{m} (x {}^{l - m} ) {}^{n}

x {}^{(m - n) {}^{l} } \times x {}^{(n - l) {}^{m} } \times x {}^{(l - m) {}^{n} }

x {}^{lm - ln} \times x {}^{mn - lm} \times x {}^{ln - mn}


eliminating opposites

x {}^{0}

=1

Hope it helps!
Similar questions