Physics, asked by bexini6671, 9 months ago

pls solve ?...............​

Attachments:

Answers

Answered by Atαrαh
6

Given :

  • initial velocity = 0 m /s

( as the coin is dropped it's initial velocity will be zero )

  • height of the coin from the floor of the elevator = 2.45 m

  • acceleration due to gravity = 9.8m /s²

Solution :

By using the second kinematic equation ,

 \displaystyle\star \underline{ \boxed {\green{s = ut +  \frac{1}{2} g {t}^{2} }}}

here ,

  • s = distance
  • u = initial velocity
  • t = time taken
  • g = acceleration due to gravity

Substituting the given values in the above equation we get ,

 \displaystyle \implies{s =  \frac{1}{2} g{t}^{2} }

 \displaystyle \implies{{t}^{2}  =  \frac{2s}{ g} }

\displaystyle \implies{ {t}^{2}  =  \frac{2 \times 2.45}{9.8} }

\displaystyle \implies{ {t}^{2}  =  \frac{4.9}{9.8} }

 \displaystyle \implies{{t}^{2}  =  \frac{1}{2} }

\displaystyle \boxed{ \red{t =  \frac{1}{ \sqrt{2} } }}

Answered by ItzDαrkHσrsє
12

\underline\mathrm{Given-}

  • \underline\mathrm{Initial \: Velocity (u) = 0}
  • \underline\mathrm{Distance = 2.45}
  • \underline\mathrm{Acceleration = 9.8}

\underline\mathrm{To \: Find-}

  • \underline\mathrm{Time = ?}

\underline\mathrm{Solution-}

We Know 2nd Kinematic / Eqn of Motion,

★ \: s = ut +  \frac{1}{2}  \times  {gt}^{2}

Here,

  • \underline\mathrm{S = Distance}
  • \underline\mathrm{U = Initial \: Velocity}
  • \underline\mathrm{T = Time}
  • \underline\mathrm{G = Acceleration (Gravity)}

Placing Values in the Equation,

⟶s = 0 \times 0 +  \frac{1}{2}  \times  {gt}^{2}

⟶s =  \frac{1}{2} \times   {gt}^{2}

⟶ {t}^{2}  =  \frac{2s}{g}

⟶ {t}^{2}  =  \frac{2 \times 2.45}{9.8}

⟶ {t}^{2}  = \frac{\cancel{4.9}}{\cancel{9.8}}

⟶ {t}^{2}  =  \frac{1}{2}

⟶t =  \frac{1}{ \sqrt{2} }

\underline\mathrm{⛬ Option \: B \: Is \: Correct!}

Similar questions