Math, asked by GEETIKA07VARSHNEY, 7 months ago

pls solve and send it asap​

Attachments:

Answers

Answered by MaIeficent
5

Step-by-step explanation:

Question:-

\sf Prove \: that:-

\sf \sqrt{ \dfrac{sec \theta - 1}{sec \theta + 1} }  +  \sqrt{ \dfrac{sec \theta  +  1}{sec \theta  - 1} }  = 2cosec \theta

Solution:-

 \sf LHS = \sqrt{ \dfrac{sec \theta - 1}{sec \theta + 1} }  +  \sqrt{ \dfrac{sec \theta  +  1}{sec \theta  - 1} }

\sf By \: rationalizing \: the \: denominator

 \sf  = \sqrt{ \dfrac{sec \theta - 1}{sec \theta + 1} \times   \dfrac{sec \theta - 1}{sec \theta  -  1}}  +  \sqrt{ \dfrac{sec \theta  +  1}{sec \theta  - 1}  \times \dfrac{sec \theta  +  1}{sec \theta + 1} }

 \sf  = \sqrt{ \dfrac{(sec \theta - 1)(sec \theta   -  1)}{(sec \theta + 1)(sec \theta  -  1)} }  +  \sqrt{ \dfrac{(sec \theta  +  1)(sec \theta + 1)}{(sec \theta  - 1)(sec \theta + 1)}  }

 \sf  = \sqrt{ \dfrac{(sec \theta - 1) ^{2} }{sec ^{2}  \theta  -  1} }  +  \sqrt{ \dfrac{(sec\theta  +  1)^{2} }{sec^{2} \theta  - 1}  }

 \sf  = \dfrac{ \sqrt{(sec \theta - 1) ^{2} }}{ \sqrt{tan ^{2}  \theta  }}  +  \dfrac{ \sqrt{( sec\theta  +  1)^{2}} }{ \sqrt{tan^{2} \theta} }    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg( \because {sec}^{2} \theta - 1 =  {tan}^{2}   \theta \bigg)

 \sf  = \dfrac{ sec \theta - 1}{ tan  \theta  }  +  \dfrac{ sec\theta  +  1 }{ tan\theta}

 \sf  = \dfrac{ sec \theta - 1 + sec\theta  +  1 }{ tan  \theta  }

 \sf  = \dfrac{ 2 sec\theta   }{ tan  \theta  }

 \sf  = \dfrac{ 2   \times \dfrac{1}{cos \theta}   }{  \dfrac{sin \theta}{cos \theta} }  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bigg(\because sec\theta = \dfrac{1}{cos\theta} \: , \: tan\theta = \dfrac{sin\theta}{cos\theta}\bigg)

 \sf  = \dfrac{ 2 }{  sin \theta} \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \: \:   \:  \:  \:  \:  \: \bigg(\because \dfrac{1}{sin\theta} = cosec\theta\bigg)

 \sf  =2cosec \theta = RHS

LHS = RHS

Hence Proved

Similar questions