Math, asked by tgg93047, 1 month ago

pls solve and send the answers in book​

Attachments:

Answers

Answered by Sweetoldsoul
7

Answer:

p² - q² = x² - y²

Step-by-step explanation:

q\: tan \theta \:+\:p\:sec\theta\:=\:x \:.\:.\:.\:.\:.\:.(i)\\p\: tan \theta \:+\:q\:sec\theta\:=\:y \:.\:.\:.\:.\:.\:.(ii)\\

  • Squaring both the equations

(q\: tan \theta \:+\:p\:sec\theta)^{2}\:=\:x^2 \:.\:.\:.\:.\:.\:.(i)\\(p\: tan \theta \:+\:q\:sec\theta)^2\:=\:y^2 \:.\:.\:.\:.\:.\:.(ii)\\

  • Applying the identity:-  (a + b)²  = a² + b² + 2ab

q^2\: tan^2 \theta \:+\:p^2\:sec^2\theta\:+\:2pq\:sec\theta tan\theta=\:x^2 \:.\:.\:.\:.\:.\:.(i)\\p^2\: tan^2 \theta \:+\:q^2\:sec^2\theta\:+\:2pq\:sec\theta tan\theta=\:y^2  \:.\:.\:.\:.\:.\:.(ii)\\

  • Subtracting equation (ii) from equation (i)

\implies q^2\: tan^2 \theta \:+\:p^2\:sec^2\theta\:+\:2pq\:sec\theta tan\theta=\:x^2 \:.\:.\:.\:.\:.\:.(i)\\ -(p^2\: tan^2 \theta \:+\:q^2\:sec^2\theta\:+\:2pq\:sec\theta tan\theta=\:y^2 )\:.\:.\:.\:.\:.\:.(ii)\\

\implies q^2\: tan^2 \theta \:+\:p^2\:sec^2\theta\:+\:2pq\:sec\theta tan\theta=\:x^2 \:.\:.\:.\:.\:.\:.(i)\\\:\:\:\:\:\:-\:p^2\: tan^2 \theta \:-\:q^2\:sec^2\theta\:-\:2pq\:sec\theta tan\theta=\:-\:y^2  \:.\:.\:.\:.\:.\:.(ii)\\\underline{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}

q^2\: tan^2 \theta -\:p^2\: tan^2 \theta\:+\:p^2\:sec^2\theta\:-\:q^2\:sec^2\theta+\:2pq\:sec\theta tan\theta-\:2pq\:sec\theta tan\theta=\:x^2 -y^2

  • Grouping so as to use the identity sec²Θ - tan²Θ = 1

\implies\:(p^2\:sec^2\theta\:-\:p^2tan^2\theta)\: -\: (q^2\:sec^2\theta\:-\:q^2tan^2\theta) \:+ \:(\underline{2pq\:sec\theta\:tan\theta\:-\:2pq\:sec\theta\:tan\theta})\:=\:x^2-y^2

As you can see the underlined terms get cancelled so we'll neglect them now

\implies\:(p^2\:(sec^2\theta\:-\:tan^2\theta))\: -\: (q^2(\:sec^2\theta\:-\:tan^2\theta)) \:+ \:\:=\:x^2-y^2

sec²Θ - tan²Θ = 1

\implies\:(p^2\:\times\:1)\: -\: (q^2\:\times\:1)) \:=\:x^2-y^2\\\implies\:p^2\: -\: q^2 \:=\:x^2-y^2

ANSWER :-

\implies \mathrm {p^2\:-\:q^2\:=\:x^2\:-\:y^2}

                         

\mathfrak{\huge \text Hope\: this \:helps! }

Similar questions