Pls solve both the questions and dont ignore...
Attachments:
Answers
Answered by
1
Answer:
x+y+z=8
(x+y+z)^2= x^2+y^2+z^2+2(xy+yz+zx)
(x+y+z)^3=,(x^3+y^3+z^3)+3(x+y+z)(xy+yz+zx)-3xyz
Substituting the values for (x+y+z)= 8,(xy+yz+zx)=20
We have
8^2=x^2+y^2+z^2+2(20)
64=x^2+y^2+z^2+2(20)
64-40=x^2+y^2+z^2
24=x^2+y^2+z^2
x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx).
=8*(24-20)
=8*4
=32
ii)x+y+z=15
(x+y+z)^2= x^2+y^2+z^2+2(xy+yz+zx)
(x+y+z)^3=,(x^3+y^3+z^3)+3(x+y+z)(xy+yz+zx)-3xyz
Substituting the values for (x+y+z)= 15,x^2+y^2+z^2=33
We have
15^2=33+2(xy+yz+zx)
225=33+2(xy+yz+zx)
225-33=2(xy+yz+zx)
192/2=xy+yz+zx
96=xy+yz+zx
x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx).
=15*(33-96)
=15*-63
=-945
Similar questions