pls solve expansion
Answers
Answer:
Step-by-step explanation:
Question:
If x = 1/(x-5) and x ≠ 5 , find : x^2 - 1/x^2.
Answer:
x^2 - 1/x^2 = 5√29
Note:
• (a+b)^2 = a^2 + b^2 + 2•a•b
• (a-b)^2 = a^2 + b^2 - 2•a•b
• a^2 - b^2 = (a-b)•(a+b)
• (a+b)^2 = (a-b)^2 + 4•a•b
• (a-b)^2 = (a+b)^2 - 4•a•b
Solution:
Given:
x = 1/(x-5)
To find:
x^2 - 1/x^2 = ?
We have,
=> x = 1/(x-5)
=> x•(x-5) = 1
=> x^2 - 5x = 1
=> x^2 - 1 = 5x
=> (x^2 - 1)/x = 5
=> (x^2)/x - 1/x = 5
=> x - 1/x = 5 --------(1)
Now,
We know that ;
(a+b)^2 = (a-b)^2 + 4•a•b
Thus;
=> (x + 1/x)^2 = (x - 1/x)^2 + 4•x•(1/x)
=> (x + 1/x)^2 = 5^2 + 4 {using eq-(1)}
=> (x + 1/x)^2 = 25 + 4
=> (x + 1/x)^2 = 29
=> x + 1/x = √29 ---------(2)
Also,
We know that;
a^2 - b^2 = (a-b)•(a+b)
Thus;
=> x^2 - 1/x^2 = (x - 1/x)•(x + 1/x)
{using eq-(1) and (2)}
=> x^2 - 1/x^2 = 5•√29
=> x^2 - 1/x^2 = 5√29
Hence,
Hence,The required value of x^2 - 1/x^2 is 5√29.