Math, asked by balabadal76, 6 months ago

pls solve
I WILL mark you brainlist​

Attachments:

Answers

Answered by Brâiñlynêha
10

\underline{\sf\ \ \ Given:-\ \ }

  • ∆ADC and ∆ABC
  • AZ is bisector of \sf\ \angle DAB\ and \angle DCB

\underline{\sf\bigstar\ \ To\ Prove :-\ \ }\begin{cases}\sf{\Delta BAC \cong \Delta DAC}\\ \sf{AB=AD}\\ \sf{CD=CB}\end{cases}

\underline{\underline{\sf\bigstar\ Proof :-}}

\sf\ \ In \ \Delta ADC\ and \Delta ABC\\ \\ \\ :\implies\sf \angle DAC= \angle BAC\ \ \ \ \ \big\lgroup AZ\ Bisector \big\rgroup\\ \\ \\ :\implies\sf \angle DCA= \angle BCA\ \ \ \ \ \big\lgroup Bisector \big\rgroup\\ \\ \\ :\implies\sf AC= AC\ \ \ \ \ \big\lgroup\ Common \big\rgroup\\ \\ \\ :\implies\sf \ \Delta ADC \cong \Delta ABC\ \ \ \ \ \big\lgroup\ By\ ASA\ Criteria \big\rgroup

\bullet\sf \ \ AB= AD\ \ \ \ \big(CPCT\big)\\ \\ \\ \bullet\sf\ \ CB=CD\ \ \ \ \ \big(CPCT\big)

Attachments:
Similar questions