Math, asked by PrernaShaym1, 1 year ago

Pls solve it! Fast and right answer.

Attachments:

Answers

Answered by TooFree
2

\dfrac{1}{1+ \sqrt{2} - \sqrt{3} }


=\dfrac{1}{(1+ \sqrt{2}) - (\sqrt{3} )} \times \dfrac{(1+ \sqrt{2}) + (\sqrt{3}) }{(1+ \sqrt{2}) + (\sqrt{3}) }


=\dfrac{1+ \sqrt{2} + \sqrt{3}}{(1+ \sqrt{2})^2 - (\sqrt{3})^2}


=\dfrac{1+ \sqrt{2} + \sqrt{3}}{1^2+ 2\sqrt{2} + \sqrt{2}^2 - 3}


= \dfrac{1+ \sqrt{2} + \sqrt{3}}{1+ 2\sqrt{2} +2 - 3}


= \dfrac{1+ \sqrt{2} + \sqrt{3}}{2\sqrt{2}}


= \dfrac{1+ \sqrt{2} + \sqrt{3}}{2\sqrt{2}} \times \dfrac{\sqrt{2}} {\sqrt{2}}


= \dfrac{\sqrt{2} (1+ \sqrt{2} + \sqrt{3})}{4}


= \dfrac{\sqrt{2}+2 + \sqrt{6}}{4}


Similar questions