Math, asked by gunjshah2401, 8 months ago

pls solve it fast it is of math algnra

Attachments:

Answers

Answered by Anonymous
38

Given :-

 \sf{ \implies \: x \:  =  \sqrt[3]{7 + 5 \sqrt{2} }  -  \frac{1}{ \sqrt[3]{7 + 5 \sqrt{2} } }}  \\

To find :-

\sf{Value\: of \: {x}^{3} + 3x 11} \\

Solution :-

\sf{ \implies \: x \:  =  \sqrt[3]{7 + 5 \sqrt{2} }  -  \frac{1}{ \sqrt[3]{7 + 5 \sqrt{2} } }} \\

Cubing both sides

\sf{ \implies \: {x}^{3} \:  =  {\sqrt[3]{7 + 5 \sqrt{2} }  -  \frac{1}{ \sqrt[3]{7 + 5 \sqrt{2} } }}^{3}} \\

It resembles with the identity of (a-b)³

\sf{\implies {(a - b)}^{3} = {a}^{3} - {b}^{3} - 3ab( a - b) } \\

Applying this identity over here .

  \sf{\implies \: ( { \sqrt[3]{7 + 5 \sqrt{2} } })^{3}  - ( { \frac{1}{ \sqrt[3]{7 + 5 \sqrt{2} } } )}^{3}  - 3( \sqrt[3]{7 + 5 \sqrt{2} }  \times  \frac{1}{ \sqrt[3]{7 + 5 \sqrt{2} } } )( \sqrt[3]{7 + 5 \sqrt{2} -  \frac{1}{ \sqrt[3]{7 + 5 \sqrt{2} } }  } } \\

Now we know that \sf{ \implies \: x \:  =  \sqrt[3]{7 + 5 \sqrt{2} }  -  \frac{1}{ \sqrt[3]{7 + 5 \sqrt{2} } }} \\

Replacing x for its value.

\sf{\implies 7 + 5 \sqrt{2} - \frac{1}{7 + 5 \sqrt{2} } - 3 (x) } \\

Now rationalising \sf{ \frac{1}{7 + 5 \sqrt{2}}} \\

 \sf {\implies \:  \frac{1}{7 + 5 \sqrt{2} }  \times  \frac{7 - 5 \sqrt{2} }{7 - 5 \sqrt{2} } } \\

\sf{ \implies \frac{ 7 - 5 \sqrt{2}}{ {7}^{2} - {5 \sqrt{2}}^{2}}} \\

\sf{\implies \frac{ 7 - 5 \sqrt{2} }{ 49 - 50} } \\

\sf{\implies \frac{ 7 - 5 \sqrt{2} }{ -1 } } \\

\sf{\implies 5 \sqrt{2} - 7} \\

Now putting this value in simplification of identity .

\sf{\implies 7 + 5 \sqrt{2} - ( 5 \sqrt{2} - 7 ) - 3x } \\

\sf{\implies 7 + 5 \sqrt{2} - 5 \sqrt{2} + 7 - 3x } \\

{\underline{\underline{\sf{\implies {x}^{3} = 14 - 3x }}}} \\

Putting the value of x³ in + 3x - 11 .

\sf{\implies 14 - 3x + 3x - 11 } \\

\sf{\implies 14 - 11 = 3 } \\

{\underline{\underline{\sf{\implies value \: of \: expression \: is \: 3 }}}} \\

Similar questions