Math, asked by avinashmurmu99311, 9 months ago

pls solve it fast its urgent​

Attachments:

Answers

Answered by tahseen619
6

{\underline{{\text{To Prove:}}}}

 \dfrac{ \sin {}^{3} +  \cos {}^{3}   }{ \sin +  \cos }   +   \dfrac{ \sin {}^{3}  -   \cos {}^{3}   }{ \sin  - \cos }   = 2

{\underline{{\text{Solution:}}}}

\dfrac{ \sin {}^{3} +  \cos {}^{3}   }{ \sin +  \cos }   +   \dfrac{ \sin {}^{3}  -   \cos {}^{3}   }{ \sin  - \cos }   \\ \\   [\text{Using} a^3+b^3 = (a+b)(a^2-ab+b^2]  \\  \\ [\text{Using} a^3 - b^3 = (a - b)(a^2 + ab+b^2] \\ \\ \dfrac{( \sin +  \cos )( { \sin }^{2} -  \sin.\cos  + \cos {}^{2} ) }{ \sin +  \cos }   +   \dfrac{ (\sin    -    \cos) ( { \sin }^{2}  +  \sin.\cos   +  { \cos}^{2}   )}{ \sin  - \cos }   \\  \\ \dfrac{ \cancel{( \sin +  \cos )}( { \sin }^{2}  +  \cos {}^{2}  -  \sin.\cos) }{  \cancel{(\sin +  \cos)} }   +   \dfrac{ \cancel{ (\sin    -    \cos)} ( { \sin }^{2}   +  { \cos}^{2} +    \sin.\cos) }{  \cancel{(\sin  - \cos}) }   \\  \\ [\text{Using i} ] \\  \\   = 1 -  \sin.\cos + 1 +  \sin. \cos \\  \\  = 1 + 1 \\  \\  = 2 \\  \\ \therefore \text{L.H.S = R.H.S [Proved}]

{{\boxed{ \text{\blue{Some Important Trigonometry Identity}}}}}

 sin \theta . cosec\theta = 1 \\ \\</p><p>\cos \theta. \sec\theta = 1 \\ \\</p><p>\tan\theta . \cot\theta = 1\\ \\</p><p>\sin^2\theta+ \cos^2 \theta= 1 ......[\text{i}] \\ \\</p><p>\cosec^2 \theta -\cot^2 \theta = 1 \\ \\</p><p>\sec^2 \theta - \tan^2 \theta =  1

Answered by anshi60
20

To Prove :

 \frac{ {cos}^{3} A +  {sin}^{3} A}{cosA+ sinA}   +  \frac{ {cos}^{3} A -  {sin}^{3}A }{cosA - sinA}  = 2

\huge\red{\mid{\underline{\overline{\textbf {Formula \: used -}}}\mid}}

• a³+b³ = (a+b) (a²-ab+b²)

• a³-b³ = (a-b) (a²+ab+b²)

• sin²A+cos²A = 1

\huge{\bold{SoLuTiOn:-}}

Taking LHS :-

 \frac{ {cos}^{3}A +  {sin}^{3}A  }{cosA + sinA}  +  \frac{ {cos}^{3} A  -   {sin}^{3}A }{cosA- sinA}  \\  \\  =  \frac{(cosA + sinA)( {cos}^{2}A - cosA.sinA +  {sin}^{2}A)  }{cosA + sinA}  +  \frac{(cosA - sinA)( {cos}^{2} A + cosA.sinA +  {sin}^{2}A) }{cosA - sinA}  \\  \\  =  {cos}^{2}A - cosA.sinA +  {sin}^{2}  A +  {cos}^{2} A + cosA.sinA +  {sin}^{2} A \\  \\  =  ({cos}^{2} A +  {sin}^{2} A) +  ({cos}^{2} A +  {sin}^{2} A) \\  \\  = 1  + 1 \\  \\  = 2 = RHS \\  \\  {\purple{\boxed{\large{\bold{LSH = RHS}}}}}

\huge{\bold{ HeNcE \:PrOvEd}}

Similar questions