Math, asked by noblissyt, 2 months ago

pls solve it fast

u have to find ab and bc​

Attachments:

Answers

Answered by rahulkumarr179
1

Answer:

in triangle ABC,

angle A is 30..

let ab =x and bc=y

tan A=P/B

tan30=y/x

1/√3=y/x

we get ,x=√3y. [equation 1]

In triangle ADB,

angle A=60

tan 60=DB/AB

√3=(20+y)/x

from here we get,x=(20+y)/√3. [equation.2]

from equation 1 and equation 2 we get,

(20+y)/√3 =√3y

20+y=3y

20=2y

y=10cm

from equation 1 we have,

x=√3y

so,x=10√3cm

ab=10√3cm

bc=10cm

hope it helps u ☺️☺️☺️

Answered by ABHINAV012
0

Answer:

\star\large\mathcal{\underline{\underline{PLEASE \: }}}\large\mathcal\red{\underline{\underline{F}}}\large\mathcal\green{\underline{\underline{OLL}}}\large\mathcal\pink{\underline{\underline{OW \: }}}\large\mathcal\blue{\underline{\underline{ME}}}\star

Step-by-step explanation:

Given : CD = 20cm

such that /_ ACB = 60°

and, /_ADB = 30°

To  \: Find : AB  \: and,  \: BC

In \:  r.t \:  \:  ∆ABD, we \:  have:

 \frac{AB}{BD}  = Tan \:  30°

=>  \frac{AB}{20+x}  =  \:  \frac{1}{√3}

=>√3AB = 20+x

=> AB =  \frac{20+x}{ \sqrt{3} }  ---(1)

Now,  \: In \:  r.t.  \: \:  ∆ ABC , we  \: have :

 \frac{AB}{BC}  = Tan \:  60°

=>\frac{20+x}{ \frac{ \sqrt{3} }{x} } = √3

=>  \frac{20+x}{  \sqrt{3x}  }  =  \frac{ \sqrt{3} }{1}

=> 20+x = 3x

=> 20= 3x-x

=> 2x = 20

=> x = \frac{20}{2} =10

Now , substituting \:  the  \\ \:  value \:  of \:  x \:  in  \: (1) , \: we  \: get :

AB = \frac{ 20+10}{ \sqrt{3} }

=> \frac{30}{ \sqrt{3} }  × \frac{ \sqrt{3} }{ \sqrt{3} }

=>  \frac{30√3}{3}

=> 10√3

= 10×1.73

= 17.3

Therefore, AB = 17.3m   \\ \: and,  \:  \:  \: BC = 10m.

please  \: like \:  my \:  answer \\     \&\\ mark  \: me  \: brainliest \:  please \: :)))

\star\large\mathcal{\underline{\underline{PLEASE \: }}}\large\mathcal\red{\underline{\underline{F}}}\large\mathcal\green{\underline{\underline{OLL}}}\large\mathcal\pink{\underline{\underline{OW \: }}}\large\mathcal\blue{\underline{\underline{ME}}}\star

\star \: i \: hope \: you \: will \: understand \: me\star

Similar questions