Math, asked by hemlatasantwani, 9 months ago

pls solve it , on a paper not type and answer it will be convenient and helpfull for me and will that as brainelist​

Attachments:

Answers

Answered by BrainlyTornado
20

QUESTION:

Simplify by rationalizing the denominator

 \dfrac{3 \sqrt{2} }{ \sqrt{6}  +  \sqrt{3} }  -  \dfrac{4 \sqrt{3}}  { \sqrt{6}  +  \sqrt{2} }  -  \dfrac{ \sqrt{6} }{ \sqrt{2}  +  \sqrt{3} }

ANSWER:

2 \sqrt{6} ( \sqrt{2}  -  \sqrt{3}) \ \ (or)\ \ 4\sqrt{3}-6\sqrt{2}

GIVEN:

 \dfrac{3 \sqrt{2} }{ \sqrt{6}  +  \sqrt{3} }  -  \dfrac{4 \sqrt{3}}  { \sqrt{6}  +  \sqrt{2} }  -  \dfrac{ \sqrt{6} }{ \sqrt{2}  +  \sqrt{3} }

TO SIMPLIFY:

 \dfrac{3 \sqrt{2} }{ \sqrt{6}  +  \sqrt{3} }  -  \dfrac{4 \sqrt{3}}  { \sqrt{6}  +  \sqrt{2} }  -  \dfrac{ \sqrt{6} }{ \sqrt{2}  +  \sqrt{3} }

EXPLANATION:

 \dfrac{3 \sqrt{2} }{ \sqrt{6}  +  \sqrt{3} }  -  \dfrac{4 \sqrt{3}}  { \sqrt{6}  +  \sqrt{2} }  -  \dfrac{ \sqrt{6} }{ \sqrt{2}  +  \sqrt{3} }

Take \ \  \dfrac{3 \sqrt{2} }{ \sqrt{6}  +  \sqrt{3} }

Multiply by √6 - √3 on both numerator and denominator.

\dfrac{3 \sqrt{2} }{ \sqrt{6}  +  \sqrt{3} }  \times  \dfrac{\sqrt{6}  - \sqrt{3}}{\sqrt{6}   - \sqrt{3}}

(A+B)(A-B) = A^2 - B^2

\dfrac{3 \sqrt{2}(\sqrt{6}   -  \sqrt{3}) }{ {(\sqrt{6})}^{2}    -  (\sqrt{3}) ^{2}  }

\dfrac{3 \sqrt{12}   -  3\sqrt{6} }{6 - 3}

\dfrac{3 \sqrt{12}  -  3\sqrt{6} }{3}

 \sqrt{12}   -   \sqrt{6}

Take \ \  -  \dfrac{4 \sqrt{3}}  { \sqrt{6}  +  \sqrt{2} }

Multiply by √6 - √2 on both numerator and denominator.

-  \dfrac{4 \sqrt{3}}  { \sqrt{6}  +  \sqrt{2} }   \times  \dfrac{ \sqrt{6} -\sqrt{2}}{ \sqrt{6}   -   \sqrt{2}}

-  \dfrac{4 \sqrt{3} (\sqrt{6}   -  \sqrt{2})}  { (\sqrt{6})^{2}    -  (\sqrt{2})^{2}  }

-  \dfrac{4(\sqrt{18}   -  \sqrt{6})} {6 - 2}

 \dfrac{4( - \sqrt{18}   + \sqrt{6})} {4}

 \sqrt{6}  -  \sqrt{18}

 Take \ \ -   \dfrac{ \sqrt{6} }{ \sqrt{2}  +  \sqrt{3} }

Multiply by √2 - √3 on both numerator and denominator.

 -   \dfrac{ \sqrt{6} }{ \sqrt{2}  +  \sqrt{3} }  \times \dfrac{\sqrt{2}   -  \sqrt{3}}{\sqrt{2}   -   \sqrt{3}}

 -   \dfrac{ \sqrt{6} (\sqrt{2}   -   \sqrt{3})}{ (\sqrt{2})^{2}   - (\sqrt{3})^{2}  }

 -   \dfrac{ (\sqrt{12}   -   \sqrt{18})}{ 2 - 3  }

 -   \dfrac{ (\sqrt{12}   -   \sqrt{18})}{ - 1  }

 \sqrt{12}  -  \sqrt{18}

ADD THE THREE TERMS

 \sqrt{12}   -   \sqrt{6}  + \sqrt{6}  -  \sqrt{18}  +  \sqrt{12}  -  \sqrt{18}

 2 \sqrt{12}  - 2 \sqrt{18}

2 \sqrt{6} ( \sqrt{2}  -  \sqrt{3}) \ \ (or)\ \ 4\sqrt{3}-6\sqrt{2}

Answered by harshita080605
16

ANSWER:

2(2 root 3-3 root 2)

Attachments:
Similar questions