Math, asked by namratapanda11, 1 month ago

pls solve it properly urgent no unnecessary answers​

Attachments:

Answers

Answered by mathdude500
6

Given Question :-

Solve for x :-

\rm :\longmapsto\:sin\bigg[ {sin}^{ - 1} \dfrac{1}{5} +  {cos}^{ - 1}x\bigg] = 1

\large\underline{\sf{Solution-}}

Given Inverse Trigonometric function is

\rm :\longmapsto\:sin\bigg[ {sin}^{ - 1} \dfrac{1}{5} +  {cos}^{ - 1}x\bigg] = 1

can be rewritten as

\rm :\longmapsto\:{sin}^{ - 1} \dfrac{1}{5} +  {cos}^{ - 1}x=  {sin}^{ - 1}1

\rm :\longmapsto\:{sin}^{ - 1} \dfrac{1}{5} +  {cos}^{ - 1}x=  {sin}^{ - 1}\bigg[sin\dfrac{\pi}{2} \bigg]

We know,

\boxed{ \tt{ \:  {sin}^{ - 1}(sinx) = x \: }}

So, using this, we get

\rm :\longmapsto\:{sin}^{ - 1} \dfrac{1}{5} +  {cos}^{ - 1}x=  \dfrac{\pi}{2}

\rm :\longmapsto\:{sin}^{ - 1} \dfrac{1}{5} =  \dfrac{\pi}{2} -  {cos}^{ - 1}x

We know,

\boxed{ \tt{ \:  {cos}^{ - 1}x +  {sin}^{ - 1}x = \dfrac{\pi}{2} \: }}

So, using this, we get

\rm :\longmapsto\:{sin}^{ - 1} \dfrac{1}{5} = {sin}^{ - 1}x

\bf\implies \:x \:  =  \: \dfrac{1}{5}

More to know :-

\boxed{ \tt{ \:  {cos}^{ - 1}x +  {sin}^{ - 1}x = \dfrac{\pi}{2} \: }}

\boxed{ \tt{ \:  {cosec}^{ - 1}x +  {sec}^{ - 1}x = \dfrac{\pi}{2} \: }}

\boxed{ \tt{ \:  {cot}^{ - 1}x +  {tan}^{ - 1}x = \dfrac{\pi}{2} \: }}

\boxed{ \tt{ \:  {tan}^{ - 1}x +  {tan}^{ - 1}y =  {tan}^{ - 1}\bigg[\dfrac{x + y}{1 - xy} \bigg] \: }}

\boxed{ \tt{ \:  {tan}^{ - 1}x  -   {tan}^{ - 1}y =  {tan}^{ - 1}\bigg[\dfrac{x  -  y}{1  +  xy} \bigg] \: }}

\boxed{ \tt{ \:  {sin}^{ - 1}x +  {sin}^{ - 1}y =  {sin}^{ - 1}(x \sqrt{1 -  {y}^{2} } + y \sqrt{1 -  {x}^{2} }}}

\boxed{ \tt{ \:  {sin}^{ - 1}x  -  {sin}^{ - 1}y =  {sin}^{ - 1}(x \sqrt{1 -  {y}^{2} }  -  y \sqrt{1 -  {x}^{2} }}}

Similar questions