pls solve it's urgent..i will mark your answer as brainliest
Answers
Answer:
Given:
Hydraulic pressure (P) =
Bulk modulus of glass (B) =
To Find:
Fractional change in volume of glass sphere ()
Explanation:
Formula:
Substituting values of P & B in the equation:
Fractional change in volume of glass sphere ( ) =
Answer:
Hydraulic pressure (P) = $$\sf 1.01 \times 10^6 \ N/m^2 }$$
Bulk modulus of glass (B) = $$\sf 3.7 \times 10^{10} \ N/m^2 }$$
To Find:
Fractional change in volume of glass sphere ($$\sf \frac{\Delta V}{V}$$ )
Explanation:
Formula:
$$\boxed{ \bold{\sf B = \frac{P}{\frac{\Delta V}{V} }}}$$
$$\sf \implies \frac{\Delta V}{V} = \frac{P}{B }$$
Substituting values of P & B in the equation:
$$\sf \implies \frac{\Delta V}{V} = \frac{1.01 \times {10}^{6} }{3.7 \times {10}^{10} }$$
$$\sf \implies \frac{\Delta V}{V} = \frac{0.273 \times {10}^{6} }{ {10}^{10} }$$
$$\sf \implies \frac{\Delta V}{V} =0.273 \times {10}^{6 - 10}$$
$$\sf \implies \frac{\Delta V}{V} =0.273 \times {10}^{ - 4}$$
$$\sf \implies \frac{\Delta V}{V} =2.73 \times {10}^{ - 5}$$
$$\therefore$$
Fractional change in volume of glass sphere ($$\sf \frac{\Delta V}{V}$$ ) = $$\sf 2.73 \times 10^{-5}$$
Explanation:
plz follow me and mark as brainlist