Math, asked by aayushchauhan019, 7 months ago



pls solve... it's urgent.
if correct I'll mark as brainiest​

Attachments:

Answers

Answered by Anonymous
5

Step-by-step explanation:

\huge\boxed{\fcolorbox{black}{pink}{Answer}}

Given :- root 1 - cos theta / 1 + cos theta = codec theta - cot theta

Solution:- upaar h

Attachments:
Answered by mddilshad11ab
163

\sf\large\underline\blue{Given:}

\tt{\implies \sqrt{\dfrac{1-cos\theta}{1+cos\theta}}=cosec\theta-cot\theta}

\sf\large\underline\blue{Solution:}

To prove LHS=RHS at first we have to rationalise by applying formula of trigonometry:]

\sf\large\underline\blue{Here\:we\: solve\:by\:LHS:}

\tt{\implies \sqrt{\dfrac{1-cos\theta}{1+cos\theta}}}

\tt{\implies \sqrt{\dfrac{1-cos\theta}{1+cos\theta}*\dfrac{1-cos\theta}{1-cos\theta}}}

\tt{\implies \sqrt{\dfrac{(1-cos\theta)^2}{1-cos^2\theta}}}

\tt{\implies \sqrt{\dfrac{(1-cos\theta)^2}{sin^2\theta}}}

\tt{\implies \dfrac{1-cos\theta}{sin\theta}}

\tt{\implies \dfrac{1}{sin\theta}-\dfrac{cos\theta}{sin\theta}}

\tt{\implies cosec\theta-cot\theta}

\sf\large{Hence,}

\tt\large\green{L.H.S=R.H.S}

Similar questions