Math, asked by 22sakshi06, 3 months ago

pls solve it...step by step​

Attachments:

Answers

Answered by EnchantedGirl
17

Given:-

  • \sf log_2 x +log_4 x +log_{16}x = \frac{21}{4}

\\

To find:-

  • Value of x.

\\

Solution:-

\\

Using the formula,

\displaystyle \mapsto \underline{\boxed{\sf log_{a^n} N=\frac{1}{n}log_a N}}

We can write,

\displaystyle \implies \sf log_4 x = log_{2^2}x \\\\\implies \sf log_{16}x=log_{2^4}x\\\\

Putting the the given equation,

:\implies \sf log_2 x +log_{2^2}x +log_{2^4}x = \frac{21}{4}\\\\

Using the base power rule of logarithm,the exponents can be separated from the bases of the logarithmic functions at base position.

\displaystyle :\implies \sf log_2x+\frac{1}{2} log_2x + \frac{1}{4} log_2 x = \frac{21}{4} \\\\

\displaystyle :\implies \sf log_2 x \bigg(1+\frac{1}{2} +\frac{1}{4} \bigg) = \frac{21}{4} \\ \\

:\implies \sf \dfrac{7}{4} log_2 x=\dfrac{21}{4} \\\\

\displaystyle :\implies \sf log_2x = \frac{21}{4} \times \frac{4}{7} \\\\

:\implies \sf log_2 x = 3\\\\

:\implies \sf x = 2^3 \\\\

\displaystyle :\implies \underline{\boxed{\sf x = 8}}\\\\

Hence, the value of x is 8.

Option(A) is correct.

_______________


EthicalHacker01: Superb
EnchantedGirl: Tq
Answered by Anonymous
7

Question:-

            1. If \rm {log_2x+log_4x+log_16x=\frac{21}{4}}, find x.

To find:-

  • x

Solution:-

✔  \rm log_b_c a=\frac{1}{c} log_b a

\rm log_2 x + log_2^{2} x+log_2^{4} x = \frac{21}{4}

\rm log_2 x+\frac{1}{2} log_2x+\frac{1}{4} log_2x=\frac{21}{4}

\rm log_2 \times [1+\frac{1}{2} +\frac{1}{4}]=\frac{21}{4}

\rm (log_2x)[\frac{4+2+1}{4} ]=\frac{21}{4}

\rm (log_2x)(\frac{7}{4} )=\frac{21}{4}

\rm log_2x=\frac{21}{4} \times\frac{4}{7} =\frac{21}{7} =3

\rm log_2x=3

\rm log_b a=c=a\neq b^{2}

\rm log_2 x=3

  ✔ x = \bold\rm{2^{3}

          = 8

Required answer:-

  • 8

Similar questions