Math, asked by Midhunsr, 1 month ago

Pls solve on paper using eliminate method​

Attachments:

Answers

Answered by MysticSohamS
1

Answer:

hey here is your answer

pls mark it as brainliest

Attachments:
Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given pair of equations is

\rm :\longmapsto\:\dfrac{x}{a}  + \dfrac{y}{b}  = 2 -  -  -  - (1)

and

\rm :\longmapsto\:ax - by =  {a}^{2} -  {b}^{2}  -  -  -  -  - (2)

Consider,

\rm :\longmapsto\:\dfrac{x}{a}  + \dfrac{y}{b}  = 2 -  -  -  - (1)

Now, Equation (1) can be rewritten as

\rm :\longmapsto\:\dfrac{bx + ay}{ab}  = 2

\rm :\longmapsto\:bx + ay = 2ab -  -  -  - (3)

Now, multiply equation (2) by b, we get

\rm :\longmapsto\:abx -  {b}^{2} y =  b{a}^{2} -  {b}^{3}  -  -  -  -  - (4)

Now, multiply equation (3) by a, we get

\rm :\longmapsto\:abx +  {a}^{2} y = 2b {a}^{2}  -  -  -  - (5)

Now Subtracting equation (4) from equation (5), we get

\rm :\longmapsto\:{b}^{2}y +  {a}^{2}y =  {ba}^{2} +  {b}^{3}

\rm :\longmapsto\:({b}^{2}+  {a}^{2})y = b( {a}^{2} +  {b}^{2})

\bf\implies \:y = b

On substituting the value of y = b in equation (2), we get

\rm :\longmapsto\:ax - b \times b=  {a}^{2} -  {b}^{2}

\rm :\longmapsto\:ax -  {b}^{2} =  {a}^{2} -  {b}^{2}

\rm :\longmapsto\:ax =  {a}^{2}

\bf\implies \:x = a

Hence,

The solution of linear equations

\rm :\longmapsto\:\dfrac{x}{a}  + \dfrac{y}{b}  = 2

and

\rm :\longmapsto\:ax - by =  {a}^{2} -  {b}^{2}

is

\underbrace{\boxed{ \tt{ \: x \:  =  \: a \:  \:  \:  \:  \: and \:  \:  \:  \:  \: y \:  =  \: b \: }}}

Verification :-

Consider equation (1),

\rm :\longmapsto\:\dfrac{x}{a}  + \dfrac{y}{b}  = 2

On substituting the values of x and y we get

\rm :\longmapsto\:\dfrac{a}{a}  + \dfrac{b}{b}  = 2

\rm :\longmapsto\:1 + 1 = 2

\rm :\longmapsto \: 2= 2

Hence, Verified

Consider equation (2),

\rm :\longmapsto\:ax - by =  {a}^{2} -  {b}^{2}

On substituting the values of a and b, we get

\rm :\longmapsto\:a(a) - b(b) =  {a}^{2} -  {b}^{2}

\rm :\longmapsto\: {a}^{2} - {b}^{2} =  {a}^{2} -  {b}^{2}

Hence, Verified

Similar questions