Math, asked by Anu1703, 1 year ago

Pls solve question 32

Attachments:

Answers

Answered by Anonymous
3

Solution

let ...

x {}^{y}  = u \:  \: and \:  \: y {}^{x}  = v

now...

x {}^{y}  + y {}^{x}  = a {}^{b}  \\  =   > u + v = a {}^{b}  \\  =  >  \frac{du}{dx}  +  \frac{dv}{dx}  = 0

now...

u = x {}^{y}  \\  =  > log(u)   = y log(x) \\  =  >  \frac{1}{u}  \frac{du}{dx}  =  \frac{y }{x}  + log(x)   \frac{dy}{dx}  \\  =  >  \frac{du}{dx}  = yx {}^{y - 1}  + x {}^{y}  log(x)  \frac{dy}{dx}  \\

and...

v = y {}^{x}    \\  =  >   log(v)  = x log(y)  \\  =  >  \frac{1}{v}  \frac{dv}{dx}  =  \frac{x}{y} \frac{dy}{dx}   +  log(y)  \\  =  >  \frac{dv}{dx}  = xy {}^{x - 1} \frac{dy}{dx}   + y {}^{x}  log(y)

therefore....

=  >  \frac{du}{dx}  +  \frac{dv}{dx}  = 0 \\  =  > yx {}^{y - 1}  +x {}^{y}   log(x)  \frac{dy}{dx}  + xy {}^{x - 1}  \frac{dy}{dx}  +  y {}^{x} log(y)  = 0 \\  =  >  \frac{dy}{dx}  ( {x}^{y} log(x) + xy {}^{x - 1} ) =    - (yx {}^{y - 1}  + y {}^{x} log(y) )  \\  =  >  \frac{dy}{dx}  =  \frac{ - (yx {}^{y - 1}  + y {}^{x}  log(y)  )}{( \: x {}^{y}  log(x)  + xy {}^{x - 1}) }

Hope this helps you.....✌️

Similar questions