PLS solve question no. 20 . Urgent!!! [ONLY CORRECT ANSWER ACCEPTED NO NONSENSE OR ABSURD ANSWER OR U WILL BE REPORTED].
Answers
Given :-
(ax+by/a²+b²) = (by+cz/b²+c²) = (cz+ac/c²+a²)
To Prove :-
- (x/a) = (y/b) = (z/c)
Solution :-
Let us Assume That, (ax+by/a²+b²) = (by+cz/b²+c²) = (cz+ac/c²+a²) are Equal to k .( where k is any constant Number .)
Than,
→ (ax+by/a²+b²) = k
→ (ax + by) = k * (a² + b²) -------- Equation (1).
Similarly,
→ (by+cz/b²+c²) = k
→ (by + cz) = k * (b² + c²) -------- Equation (2).
And,
→ (cz+ac/c²+a²) = k
→ (cz+ax) = k * (c²+a²) -------- Equation (3).
_________________
Now, Adding All Three Equations we get,
→ 2(ax + by + cz) = 2 * k * (a² + b² + c²)
→ (ax + by + cz) = k * (a² + b² + c²) ------ Equation (4).
_________________
Now, Subtracting Equation (1) From Equation (4), we get,
→ (ax + by + cz) - (ax + by) = k * (a² + b² + c²) - k *(a² + b²)
→ ax - ax + by - by + cz = k[ a² + b² + c² - a² - b² ]
→ cz = k * c²
→ z = k * c
→ k = (z/c) . ----------- Equation (5) .
Similarly,
Subtracting Equation (2) From Equation (4), we get,
→ (ax + by + cz) - (cz + ac) = k * (a² + b² + c²) - k *(b² + c²)
→ ax + by + cz - cz = k[ a² + b² + c² - b² - c² ]
→ ax = k * a²
→ x = k * a
→ k = (x/a) . ---------- Equation (6) .
And,
Subtracting Equation (3) From Equation (4), we get,
→ (ax + by + cz) - (cz + ax) = k * (a² + b² + c²) - k *(c² + a²)
→ ax + by + cz - cz - ax = k[ a² + b² + c² - c² - a² ]
→ by = k * b²
→ y = k * b
→ k = (y/b) . ----------- Equation (7).
__________________
Hence, Now, From Equation (5) , (6) & (7) , we can say That,
→ k = (z/c) = (x/a) = ( y/b)
Or,
→ (x/a) = (y/b) = (z/c) . (Proved).
________________________________
- (ax+by/a²+b²) = (by+cz/vb²+c²) = (cz+ax/c²+a²)
________________________________
- x/y = y/b = z/c
________________________________
Let the sum of (ax+by/a²+b²) = (by+cz/vb²+c²) = (cz+ax/c²+a²) be k
↪(ax+by/a²+b²) = k
↪ (ax + by) = k ×(a² + b²) _____(EQ.1)
↪ (by+cz/b²+c²) = k
↪ (by + cz) = k ×(b² + c²) _____(EQ.2)
↪(cz+ac/c²+a²) = k
↪ (cz+ax) = k ×(c²+a²) ______(EQ.3)
________________________________
By adding the Equations We get,
↪ 2(ax + by + cz) = 2 ×k ×(a² + b² + c²)
↪(ax + by + cz) = k ×(a² + b² + c²) _______(EQ.4)
________________________________
Then,
We'll subtract equation 4 from 1
↪(ax + by + cz) - (ax + by) = k * (a² + b² + c²) - k ×(a² + b²)
↪ ax - ax + by - by + cz = k[ a² + b² + c² - a² - b² ]
↪ cz = k ×c²
↪ z = k ×c
↪k = (z/c) _____(EQ.5)
________________________________
Now,
Subtracting equation 4 from 2
↪(ax + by + cz) - (cz + ac) = k × (a² + b² + c²) - k ×(b² + c²)
↪ax + by + cz - cz = k[ a² + b² + c² - b² - c² ]
↪ax = k × a²
↪x = k ×a
↪ k = (x/a) ________(EQ.6)
______________________________
Again,
Subtracting equation 4 from 3
↪ (ax + by + cz) - (cz + ax) = k × (a² + b² + c²) - k ×(c² + a²)
↪ax + by + cz - cz - ax = k[ a² + b² + c² - c² - a² ]
↪by = k ×b²
↪ y = k×b
↪k = (y/b) ______(EQ.7)
______________________________
Now as we got our values in the equations 5,6 & 7, We can say that....
k = (z/c) = (x/a) = ( y/b)
______________________________
Therefore,